Advertisement

Adaptation of Rhodococcus to Organic Solvents

  • Carla C. C. R. de CarvalhoEmail author
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 16)

Abstract

Most of the commercially interesting compounds and those affecting the environment are poor water soluble. Bacteria able to carry out the bioconversion or bioremediation of such compounds in systems using organic solvents as substrate and/or product reservoir are valuable. Strains of Rhodococcus have been reported to be particularly solvent tolerant whilst presenting a broad array of enzymes with potential for the production of industrially relevant compounds and/or for the metabolism of recalcitrant organic solvents. Under stressful conditions, these cells can adapt the cell wall and membrane compositions, as well as the physicochemical properties of the cell surface, can degrade or bioconvert toxic compounds such as benzene and toluene, and can aggregate and produce exopolymeric substances to protect the cell population. The adaptability and versatility of Rhodococcus cells can further broaden their application scope.

Notes

Acknowledgements

The author acknowledges Fundação para a Ciência e a Tecnologia, I.P. (FCT), Portugal, for financial support under programme “FCT Investigator 2013” (IF/01203/2013/CP1163/CT0002).

References

  1. Abbad-Andaloussi S, Lagnel C, Warzywoda M, Monot F (2003) Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enzym Microb Technol 32:446–454CrossRefGoogle Scholar
  2. Abe A, Inoue A, Usami R, Moriya K, Horikoshi K (1995) Properties of a newly isolated marine bacterium that can degrade polyaromatic hydrocarbons in the presence of organic solvents. J Mar Biotechnol 2:182–186Google Scholar
  3. Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179PubMedCrossRefGoogle Scholar
  4. Al Akhrass F, Al Wohoush I, Chaftari A-M, Reitzel R, Jiang Y, Ghannoum M et al (2012) Rhodococcus bacteremia in cancer patients is mostly catheter related and associated with biofilm formation. PLoS One 7:e32945PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alvarez HM (2003) Relationship between beta-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegrad 52:35–42CrossRefGoogle Scholar
  6. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386PubMedCrossRefGoogle Scholar
  7. Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105CrossRefGoogle Scholar
  8. Bell K, Philp J, Aw D, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210PubMedCrossRefGoogle Scholar
  9. Benoit S, Benachour A, Taouji S, Auffray Y, Hartke A (2002) H2O2, which causes macrophage-related stress, triggers induction of expression of virulence-associated plasmid determinants in Rhodococcus equi. Infect Immun 70:3768–3776PubMedPubMedCentralCrossRefGoogle Scholar
  10. Booth IR (2002) Stress and single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 78:19–30PubMedCrossRefGoogle Scholar
  11. Bouchez-Naïtali M, Vandecasteele JP (2008) Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J Microbiol Biotechnol 24:1901–1907CrossRefGoogle Scholar
  12. Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 147:2537–2543PubMedCrossRefGoogle Scholar
  13. Bouchez-Naïtali M, Abbad-Andaloussi S, Warzywoda M, Monot F (2004) Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium. Appl Microbiol Biotechnol 65:440–445PubMedCrossRefGoogle Scholar
  14. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63PubMedCrossRefGoogle Scholar
  15. Brink LES, Tramper J (1985) Optimization of organic solvent in multiphase biocatalysis. Biotechnol Bioeng 27:1258–1269PubMedCrossRefGoogle Scholar
  16. Cassells JM, Halling PJ (1990) Protease-catalyzed peptide-synthesis in aqueous-organic 2-phase systems: reactant precipitation and interfacial inactivation. Enzym Microb Technol 12:755759CrossRefGoogle Scholar
  17. Čejková A, Masak J, Jirku V, Vesely M, Patek M, Nesvera J (2005) Potential of Rhodococcus erythropolis as a bioremediation organism. World J Microbiol Biotechnol 21:317–321CrossRefGoogle Scholar
  18. Chapman JS (2003) Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int Biodeterior Biodegrad 51:271–276CrossRefGoogle Scholar
  19. Chen HL, Yao J, Wang L, Wang F, Bramanti E, Maskow T, Zaray G (2009) Evaluation of solvent tolerance of microorganisms by microcalorimetry. Chemosphere 74:1407–1411PubMedCrossRefGoogle Scholar
  20. Cheremnykh KM, Luchnikova NA, Grishko VV, Ivshina IB (2018) Bioconversion of ecotoxic dehydroabietic acid using Rhodococcus actinobacteria. J Hazard Mater 346:103–112PubMedCrossRefGoogle Scholar
  21. Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C, Horikoshi K, Bull AT (1998) Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2:269–277PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cronan JE Jr (2002) Phospholipid modifications in bacteria. Curr Opin Microbiol 5:202–205PubMedCrossRefGoogle Scholar
  23. Dafoe JT, Daugulis AJ (2014) In situ product removal in fermentation systems: improved process performance and rational extractant selection. Biotechnol Lett 36:443–460PubMedCrossRefGoogle Scholar
  24. Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462PubMedCrossRefGoogle Scholar
  25. de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Tibtech 16:493–499CrossRefGoogle Scholar
  26. de Carvalho CCCR (2012) Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol 163:125–136PubMedCrossRefGoogle Scholar
  27. de Carvalho CCCR (2016) Whole cell biocatalysts: essential workers from Nature to the industry. Microb Biotechnol 10:250–263PubMedPubMedCentralCrossRefGoogle Scholar
  28. de Carvalho CCCR, Caramujo MJ (2018) The various roles of fatty acids. Molecules 23:2583PubMedCentralCrossRefPubMedGoogle Scholar
  29. de Carvalho CCCR, da Fonseca MMR (2002a) Maintenance of cell viability in the biotransformation of (-)-carveol with whole cells of Rhodococcus erythropolis. J Mol Catal B Enzym 19:389–398CrossRefGoogle Scholar
  30. de Carvalho CCCR, da Fonseca MMR (2002b) Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B Enzym 19:377–387CrossRefGoogle Scholar
  31. de Carvalho CCCR, da Fonseca MMR (2003) A simple method to observe organic solvent drops with a standard optical microscope. Microsc Res Tech 60:465–466PubMedCrossRefGoogle Scholar
  32. de Carvalho CCCR, da Fonseca MMR (2004) Solvent toxicity in organic–aqueous systems analysed by multivariate analysis. Bioprocess Biosyst Eng 26:361–375PubMedCrossRefGoogle Scholar
  33. de Carvalho CCCR, da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726PubMedCrossRefGoogle Scholar
  34. de Carvalho CCCR, da Fonseca MMR (2007) Preventing biofilm formation: promoting cell separation with terpenes. FEMS Microbiol Ecol 61:406–413PubMedCrossRefGoogle Scholar
  35. de Carvalho CCCR, van Keulen F, da Fonseca MMR (2000) Biotransformation of limonene-1,2-epoxide to limonene-1,2-diol by Rhodococcus erythropolis cells—an introductory approach to selective hydrolysis and product separation. Food Technol Biotechnol 38:181–185Google Scholar
  36. de Carvalho CCCR, Pons MN, da Fonseca MMR (2003) Principal components analysis as a tool to summarise biotransformation data: influence on cells of solvent type and phase ratio. Biocatal Biotransform 21:305–314CrossRefGoogle Scholar
  37. de Carvalho CCCR, da Cruz AARL, Pons MN, Pinheiro HMRV, Cabral JMS, da Fonseca MMR, Ferreira BS, Fernandes P (2004) Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 64:215–222PubMedCrossRefPubMedCentralGoogle Scholar
  38. de Carvalho CCCR, Parreno-Marchante B, Neumann G, da Fonseca MMR, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67:383–388PubMedCrossRefPubMedCentralGoogle Scholar
  39. de Carvalho CCCR, Fatal V, Alves SS, da Fonseca MMR (2007) Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Appl Microbiol Biotechnol 76:1423–1430PubMedCrossRefGoogle Scholar
  40. de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320PubMedCrossRefGoogle Scholar
  41. de Carvalho CCCR, Costa SS, Fernandes P, Couto I, Viveiros M (2014a) Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front Physiol 5:133PubMedPubMedCentralGoogle Scholar
  42. de Carvalho CCCR, Marques MPC, Hachicho N, Heipieper HJ (2014b) Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl Microbiol Biotechnol 98:5599–5606PubMedGoogle Scholar
  43. de Carvalho CCCR, Fischer MA, Kirsten S, Würz B, Wick LY, Heipieper HJ (2016) Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids. AMB Express 6:66PubMedPubMedCentralCrossRefGoogle Scholar
  44. Deeb RA, Alvarez-Cohen L (1999) Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnol Bioeng 62:526–536PubMedCrossRefGoogle Scholar
  45. Derikvand P, Etemadifar Z, Biria D (2015) RSM optimization of dibenzothiophene biodesulfurization by newly isolated strain of Rhodococcus erythropolis PD1 in aqueous and biphasic systems. Microbiology 84:65–72CrossRefGoogle Scholar
  46. Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis- into trans- unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Environ Microbiol 38:382–387Google Scholar
  47. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedPubMedCentralCrossRefGoogle Scholar
  48. Eze MO (1991) Phase transitions in phospholipid bilayers: lateral phase separations play vital roles in biomembranes. Biochem Edu 19:204–208CrossRefGoogle Scholar
  49. Fang J, Lyon D, Wiesner M, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642PubMedCrossRefGoogle Scholar
  50. Fanget NVJ, Foley S (2011) Starvation/stationary-phase survival of Rhodococcus erythropolis SQ1: a physiological and genetic analysis. Arch Microbiol 193:1–13PubMedCrossRefGoogle Scholar
  51. Gilbert P, Brown MRW (1995) Some perspectives on preservation and disinfection in the present day. Int Biodeterior Biodegrad 36:219–226CrossRefGoogle Scholar
  52. Gressler LT, Vargas AC, Costa MM, Sutili FJ, Schwab M, Pereira DIB et al (2015) Biofilm formation by Rhodococcus equi and putative association with macrolide resistance. Pesqui Vet Bras 35:835–841CrossRefGoogle Scholar
  53. Gutierrez JA, Nichols P, Couperwhite I (1999) Changes in whole-cell derived fatty acids induced by benzene and occurrence of the unusual 16:1ω6c in Rhodococcus sp. 33. FEMS Microbiol Lett 176:213–218CrossRefGoogle Scholar
  54. Gutiérrez T, Learmonth RP, Nichols PD, Couperwhite I (2003) Comparative benzene-induced fatty acid changes in a Rhodococcus species and its benzene-sensitive mutant: possible role of myristic and oleic acids in tolerance. J Chem Ecol 29:2369–2378PubMedCrossRefGoogle Scholar
  55. Gutiérrez T, Learmonth RP, Couperwhite I (2009) Analysis of benzene-induced effects on Rhodococcus sp. 33 reveals that constitutive processes play a major role in conferring tolerance. Sci World J 9:209–223CrossRefGoogle Scholar
  56. Hamada T, Sameshima Y, Honda K, Omasa T, Kato J, Ohtake H (2008) A comparison of various methods to predict bacterial predilection for organic solvents used as reaction media. J Biosci Bioeng 106:357–362PubMedCrossRefGoogle Scholar
  57. Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217PubMedPubMedCentralGoogle Scholar
  58. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852PubMedPubMedCentralGoogle Scholar
  59. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415CrossRefGoogle Scholar
  60. Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7PubMedCrossRefGoogle Scholar
  61. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973PubMedCrossRefGoogle Scholar
  62. Inoue A (2011) Diversity and ecology of organic solvent tolerant microorganisms. In: Horikoshi K (ed) Extremophiles handbook. Springer Japan, Tokyo, pp 945–970CrossRefGoogle Scholar
  63. Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266CrossRefGoogle Scholar
  64. Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238PubMedCrossRefGoogle Scholar
  65. Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama S (2000) Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66:5073–5077PubMedPubMedCentralCrossRefGoogle Scholar
  66. Iwabuchi N, Sunairi M, Urai M, Itoh C, Anzai H, Nakajima M, Harayama S (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jucker BA, Harms H, Zehnder AJB (1996) Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and ntarc. J Bacteriol 178:5472–5479PubMedPubMedCentralCrossRefGoogle Scholar
  68. Junker F, Ramos J (1999) Involvement of the cis-trans isomerase Cti in the solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700PubMedPubMedCentralGoogle Scholar
  69. Kawaguchi H, Kobayashi H, Sato K (2012) Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures. J Biosci Bioeng 113:360–366PubMedCrossRefGoogle Scholar
  70. Kilbane JJ (2017) Biodesulfurization: how to make it work? AJSE 42:1–9Google Scholar
  71. Kim J-S, Powalla M, Lang S, Wagner F, Lünsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266PubMedCrossRefGoogle Scholar
  72. Kim IS, Foght JM, Gray RM (2002) Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol Bioeng 80:650–659PubMedCrossRefGoogle Scholar
  73. Kobayashi H, Takami H, Hirayama H, Kobata K, Usami R, Horikoshi K (1999) Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. J Bacteriol 181:4493–4998PubMedPubMedCentralGoogle Scholar
  74. Kolouchová I, Schreiberová O, Masák J, Sigler K, Řezanka T (2012) Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography-tandem mass spectrometry. Folia Microbiol 57:473–483CrossRefGoogle Scholar
  75. Korobov VV, Zhurenko EI, Zharikova NV, Iasakov TR, Markusheva TV (2017) Possibility of using phenol- and 2,4-dichlorophenol-degrading strain, Rhodococcus erythropolis 17S, for treatment of industrial wastewater. Mosc Univ Biol Sci Bull 72:201–205CrossRefGoogle Scholar
  76. Korshunova IO, Pistsova ON, Kuyukina MS, Ivshina IB (2016) The effect of organic solvents on the viability and morphofunctional properties of Rhodococcus. Appl Biochem Microbiol 52:43–50CrossRefGoogle Scholar
  77. Kundu D, Hazra C, Dandi N, Chaudhari A (2013) Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24:775–793PubMedCrossRefGoogle Scholar
  78. Kundu D, Hazra C, Chaudhari A (2015) Biodegradation of 2,4-dinitrotoluene with Rhodococcus pyridinivorans NT2: characteristics, kinetic modeling, physiological responses and metabolic pathway. RSC Adv 5:38818–38829CrossRefGoogle Scholar
  79. Kundu D, Hazra C, Chaudhari A (2016) Biodegradation of 2,6-dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: identification and toxicological analysis of metabolites and proteomic insights. Biocatal Agric Biotechnol 8:55–65CrossRefGoogle Scholar
  80. Kurosawa K, Laser J, Sinskey AJ (2015) Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnol Biofuels 8:76PubMedPubMedCentralCrossRefGoogle Scholar
  81. Laane C, Boeren S, Vos K (1985) On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends Biotechnol 3:251–252CrossRefGoogle Scholar
  82. Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87PubMedCrossRefGoogle Scholar
  83. Lambert PA (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 92:46S–54SPubMedCrossRefGoogle Scholar
  84. Lang S, Philp JC (1998) Surface active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70PubMedCrossRefPubMedCentralGoogle Scholar
  85. Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotechnol 16:282–290PubMedCrossRefGoogle Scholar
  86. Larkin MJ, Kulakov LA, Allen CCR (2006) Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. Adv Appl Microbiol 59:1–29PubMedCrossRefGoogle Scholar
  87. Leisinge T (1996) Biodegradation of chlorinated aliphatic compounds. Curr Opin Biotechnol 7:295–300CrossRefGoogle Scholar
  88. Leneva NA, Kolomytseva MP, Baskunov BP, Golovleva LA (2009) Phenanthrene and anthracene degradation by microorganisms of the genus Rhodococcus. Appl Biochem Microbiol 45:169–175CrossRefGoogle Scholar
  89. Li Y, Wang H, Hua F, Su M, Zhao Y (2014) Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process. Bioresour Technol 155:213–219PubMedCrossRefGoogle Scholar
  90. Lichtinger T, Reiss G, Benz R (2000) Biochemical identification and biophysical characterization of a channel-forming protein from Rhodococcus erythropolis. J Bacteriol 182:764–770PubMedPubMedCentralCrossRefGoogle Scholar
  91. Liu CW, Chang WN, Liu HS (2009) Bioremediation of n-alkanes and the formation of biofloccules by Rhodococcus erythropolis NTU-1 under various saline conditions and sea water. Biochem Eng J 45:69–75CrossRefGoogle Scholar
  92. Liu CW, Liang MS, Chen YC, Sayavedra-Soto LA, Liu HS (2012) Biodegradation of n-alkanes at high concentration and correlation to the accumulation of H+ ions in Rhodococcus erythropolis NTU-1. Biochem Eng J 63:124–128CrossRefGoogle Scholar
  93. Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092PubMedPubMedCentralCrossRefGoogle Scholar
  94. Margesin R, Fonteyne PA, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75PubMedCrossRefGoogle Scholar
  95. Marqués AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117PubMedCrossRefGoogle Scholar
  96. Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177PubMedCrossRefGoogle Scholar
  97. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179PubMedPubMedCentralCrossRefGoogle Scholar
  98. McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C et al (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci 103:15582–15587PubMedCrossRefGoogle Scholar
  99. Melchior DL (1982) Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Curr Top Membr Transp 17:263–307CrossRefGoogle Scholar
  100. Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M et al (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293PubMedCrossRefGoogle Scholar
  101. Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546PubMedCrossRefGoogle Scholar
  102. Møretrø T, Sharifzadeh S, Langsrud S, Heir E, Rickard AH (2015) Coaggregation between Rhodococcus and Acinetobacter strains isolated from the food industry. Can J Microbiol 61:503–512PubMedCrossRefGoogle Scholar
  103. Mosqueda G, Ramos-Gonzalez M, Ramos J (1999) Toluene metabolism by solvent-tolerant Pseudomonas putida DOT-T1 strain and its role in solvent impermeabilization. Gene 232:69–76PubMedCrossRefGoogle Scholar
  104. Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382PubMedCrossRefPubMedCentralGoogle Scholar
  105. Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40:189–195CrossRefGoogle Scholar
  106. Nielsen LE, Kadavy DR, Rajagopal S, Drijber R, Nickerson KW (2005) Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl Environ Microbiol 71:5171–5176PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ohshiro T, Hirata T, Izumi Y (1995) Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon. Appl Microbiol Biotechnol 44:249–252CrossRefGoogle Scholar
  108. Osborne SJ, Leaver J, Turner MK, Dunnill P (1990) Correlation of biocatalytic activity in an organic /aqueous two-liquid phase system with solvent concentration in the cell membrane. Enzyme Microb Technol 12:281–291PubMedCrossRefGoogle Scholar
  109. Pacífico C, Fernandes P, de Carvalho CCCR (2018) Mycobacterial response to organic solvents and possible implications on cross-resistance with antimicrobial agents. Front Microbiol 9:961PubMedPubMedCentralCrossRefGoogle Scholar
  110. Parales RE, Haddock JD (2004) Biocatalytic degradation of pollutants. Curr Opin Biotechnol 15:374–379PubMedCrossRefGoogle Scholar
  111. Patel SB, Kilbane JJ, Webster DA (1997) Biodesulphurisation of dibenzothiophene in hydrophobic media by Rhodococcus sp. strain IGTS8. J Chem Technol Biotechnol 69:100–106CrossRefGoogle Scholar
  112. Pen Y, Zhang ZJ, Morales-García AL, Mears M, Tarmey DS, Edyvean RG et al (2015) Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. Biochim Biophys Acta 1848:518–526PubMedCrossRefGoogle Scholar
  113. Piddock LJ (2006) Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol 4:629–636PubMedCrossRefGoogle Scholar
  114. Pini F, Grossi C, Nereo S, Michaud L, Giudice AL, Bruni V, Baldi F, Fani R (2007) Molecular and physiological characterization of psychrotrophic hydrocarbon-degrading bacteria isolated from Terra Nova Bay (Antarctica). Eur J Soil Biol 43:368–379CrossRefGoogle Scholar
  115. Poole K (2008) Bacterial multidrug efflux pumps serve other functions. Microbe 3:179–185Google Scholar
  116. Portevin D, de Sousa-D’Auria C, Houssin C, Grimaldi C, Chami M, Daffé M et al (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci USA 101:314–319PubMedCrossRefGoogle Scholar
  117. Porto B, Maass D, Oliveira JV, de Oliveira D, Yamamoto CI, Ulson de Souza AA et al (2017) Heavy gas oil biodesulfurization by Rhodococcus erythropolis ATCC 4277: optimized culture medium composition and evaluation of low-cost alternative media. J Chem Technol Biotechnol 92:2376–2382CrossRefGoogle Scholar
  118. Pospíšilová D, Schreiberová O, Jirků V, Lederer T (2015) Effects of magnetic field on phenol biodegradation and cell physiochemical properties of Rhodococcus erythropolis. Biorem J 19:201–206CrossRefGoogle Scholar
  119. Prieto MB, Hidalgo A, Rodriguez-Fernandez C, Serra JL, Llama MJ (2002) Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier. Appl Microbiol Biotechnol 58:853–859PubMedCrossRefPubMedCentralGoogle Scholar
  120. Pucci OH, Bak MA, Peressutti SR, Klein I, Hartig C, Alvarez HM, Wunsche L (2000) Influence of crude oil contamination on the bacterial community of semiarid soils of Patagonia (Argentina). Acta Biotechnol 20:129–146CrossRefGoogle Scholar
  121. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768PubMedCrossRefGoogle Scholar
  122. Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. Microbiology 115:491–503Google Scholar
  123. Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl Microbiol 28:695–701PubMedCrossRefGoogle Scholar
  124. Rieβ FG, Elflein M, Benk M, Schiffler B, Benz R, Garton N et al (2003) The cell wall of the pathogenic bacterium Rhodococcus equi contains two channel-forming proteins with different properties. J Bacteriol 185:2952–2960PubMedCentralCrossRefPubMedGoogle Scholar
  125. Rodgers RP, Blumer EN, Emmett MR, Marshall AG (2000) Efficacy of bacterial bioremediation: demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 34:535–540CrossRefGoogle Scholar
  126. Rodrigues CJC, de Carvalho CCCR (2015) Rhodococcus erythropolis cells adapt their fatty acid composition during biofilm formation on metallic and non-metallic surfaces. FEMS Microbiol Ecol 91:fiv135PubMedCrossRefGoogle Scholar
  127. Rubashko GE, Kolomytseva MP, Golovleva LA (2006) Improvement of the process of ntarcti degradation by Rhodococcus rhodochrous strain 172. Appl Biochem Microbiol 42:396–398CrossRefGoogle Scholar
  128. Russell NJ (1988) Functions of lipids: structural roles and membrane functions. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 279–365Google Scholar
  129. Russell AD (1995) Mechanisms of bacterial resistance to biocides. Int Biodeter Biodegrad 36:247–265CrossRefGoogle Scholar
  130. Saier MH (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sameshima Y, Honda K, Kato J, Omasa T, Ohtake H (2008) Expression of Rhodococcus opacus alkB genes in anhydrous organic solvents. J Biosci Bioeng 106:199–203PubMedCrossRefGoogle Scholar
  132. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268PubMedCrossRefGoogle Scholar
  133. Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660PubMedCrossRefGoogle Scholar
  134. Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198PubMedCrossRefGoogle Scholar
  135. Serrano-González MY, Chandra R, Castillo-Zacarias C, Robledo-Padilla F, Rostro-Alanis MJ, Parra-Saldivar R (2018) Biotransformation and degradation of 2,4,6-trinitrotoluene by microbial metabolism and their interaction. Def Technol 14:151–164CrossRefGoogle Scholar
  136. Sikkema J, Weber FJ, Heipieper HJ, de Bont JAM (1994) Cellular toxicity of lipophilic compounds: mechanisms, implications, and adaptations. Biocatalysis 10:113–122CrossRefGoogle Scholar
  137. Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  138. Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525PubMedCrossRefGoogle Scholar
  139. Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027PubMedPubMedCentralCrossRefGoogle Scholar
  140. Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596PubMedCrossRefGoogle Scholar
  141. Solyanikova IP, Mulyukin AL, Suzina NE, El-Registan GI, Golovleva LA (2011) Improved xenobiotic-degrading activity of Rhodococcus opacus strain 1cp after dormancy. J Environ Sci Health B 46:638–647PubMedCrossRefGoogle Scholar
  142. Sonnleitner B (1998) Dynamic adaptation of microbes. J Biotechnol 65:47–60PubMedCrossRefGoogle Scholar
  143. Stachurski J, Michalek M (1996) The effect of the zeta potential on the stability of a non-polar oil-in-water emulsion. J Colloid Interface Sci 184:433–436PubMedCrossRefGoogle Scholar
  144. Stancu MM (2014) Physiological cellular responses and adaptations of Rhodococcus erythropolis IBBPo1 to toxic organic solvents. J Environ Sci (China) 26:2065–2075CrossRefGoogle Scholar
  145. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138PubMedCrossRefGoogle Scholar
  146. Thomassin-Lacroix EJM, Yu ZT, Eriksson M, Reimer KJ, Mohn WW (2001) DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil. Can J Microbiol 47:1107–1115PubMedCrossRefGoogle Scholar
  147. Tischler D, Niescher S, Kaschabek SR, Schlömann M (2013) Trehalose phosphate synthases OtsA1 and OtsA2 of Rhodococcus opacus 1CP. FEMS Microbiol Lett 342:113–122PubMedCrossRefGoogle Scholar
  148. Torres S, Pandey A, Castro GR (2011) Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv 29:442–452PubMedCrossRefGoogle Scholar
  149. Tsitko IV, Zaitsev GM, Lobanok AG, Salkinoja-Saloneni MS (1999) Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl Environ Microbiol 65:853–855PubMedPubMedCentralGoogle Scholar
  150. Urai M, Yoshizaki H, Anzai H, Ogihara J, Iwabuchi N, Harayama S, Sunairi M, Nakajima M (2007) Structural analysis of an acidic, fatty acid ester-bonded extracellular polysaccharide produced by a ntarcti-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr Res 342:933–942PubMedCrossRefGoogle Scholar
  151. van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261PubMedCrossRefPubMedCentralGoogle Scholar
  152. van Oss CJ (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf B Biointerfaces 5:91–110CrossRefGoogle Scholar
  153. Vermuë M, Sikkema J, Verheul A, Bakker R, Tramper J (1993) Toxicity of homologous series of organic solvents for the gram-positive bacteria Arthrobacter and Nocardia sp. and the gram-negative bacteria Acinetobacter and Pseudomonas sp. Biotechnol Bioeng 42:747–758PubMedCrossRefGoogle Scholar
  154. Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss H-J (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252PubMedPubMedCentralGoogle Scholar
  155. Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555PubMedCrossRefGoogle Scholar
  156. Wang L, Qiao N, Sun FQ, Shao ZZ (2008) Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment. Extremophiles 12:335–342PubMedCrossRefGoogle Scholar
  157. Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73PubMedCrossRefGoogle Scholar
  158. Weathers TS, Higgins CP, Sharp JO (2015) Enhanced biofilm production by a toluene-degrading Rhodococcus observed after exposure to perfluoroalkyl acids. Environ Sci Technol 49:5458–5466PubMedCrossRefGoogle Scholar
  159. Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245PubMedCrossRefPubMedCentralGoogle Scholar
  160. Weber FJ, Isken S, de Bont JAM (1994) Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology 140:2013–2017PubMedCrossRefPubMedCentralGoogle Scholar
  161. Whyte LG, Slagman SJ, Pietrantonio F, Bourbonnière L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968PubMedPubMedCentralGoogle Scholar
  162. Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari D, Labbé D, Greer CW (2002) Prevalence of alkane monooxygenase genes in arctic and antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150PubMedPubMedCentralGoogle Scholar
  163. Withell ER (1942) The significance of variation in the shape of the time—survivor curves. J Hyg 42:124–132PubMedCrossRefGoogle Scholar
  164. Yamashita S, Satoi M, Iwasa Y, Honda K, Sameshima Y, Omasa T, Kato J, Ohtake H (2007) Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol 74:761–767PubMedCrossRefGoogle Scholar
  165. Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ et al (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44:2240–2254PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yoon JH, Cho YG, Kang SS, Kim SB, Lee ST, Park YH (2000) Rhodococcus koreensis sp. nov., a 2,4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50:1193–1201PubMedCrossRefGoogle Scholar
  167. Zhang J, Sun Z, Li Y, Peng X, Li W, Yan Y (2009) Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. J Hazard Mater 163:723–728PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Bioengineering, iBB-Institute for Bioengineering and BiosciencesInstituto Superior Técnico, Universidade de LisboaLisbonPortugal

Personalised recommendations