Central Metabolism of Species of the Genus Rhodococcus

  • Martín A. HernándezEmail author
  • Héctor M. Alvarez
  • Mariana P. Lanfranconi
  • Roxana A. Silva
  • O. Marisa Herrero
  • María Soledad Villalba
Part of the Microbiology Monographs book series (MICROMONO, volume 16)


Metabolism of Rhodococcus has evolved for adapting to a wide range of nutritional conditions. This adaptation often involves the flexibility of the central metabolism, which usually provides energy and precursors for biosynthesis processes, either during growth or during non-replicative metabolically active periods. The pathways of central metabolism are almost identical across widely divergent organisms, which share essentially the same metabolic network. However, this network possesses species-specific components, which depends on the biology of rhodococci. The central metabolism of members of Rhodococcus genus in the context of their physiology is the main topic of this chapter. An overview of main pathways of the central metabolism and their link with other metabolic processes is given. Glycolytic pathways, gluconeogenesis, phosphoenolpyruvate-pyruvate-oxaloacetate node, tricarboxylic acid cycle (TCA), glyoxylate pathway, and some lithoautotrophic pathways are included.


Rhodococcus Metabolism Glycolysis Gluconeogenesis Tricarboxilic acid cycle 


  1. Alvarez HM (2003) Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegrad 52:35–42CrossRefGoogle Scholar
  2. Alvarez HM (2006) Chapter 6: Bacterial triacylglycerols. In: Welson LT (ed) Triglycerides and cholesterol research. Nova Science Publishers, Hauppauge, NY, pp 159–176Google Scholar
  3. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefGoogle Scholar
  4. Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99:239–246CrossRefGoogle Scholar
  5. Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223CrossRefGoogle Scholar
  6. Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:75–86CrossRefGoogle Scholar
  7. Anderson AJ, Williams D, Dawes EA, Ewing D (1995) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Rhodococcus ruber. Can J Microbiol 41:4–13CrossRefGoogle Scholar
  8. Aragno M, Schlegel HG (1992) The mesophilic hydrogen-oxidizing (Knallgas) bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 344–384Google Scholar
  9. Araki N, Suzuki Miyauchi K, Kasai D, Masai E, Fukuda M (2011) Identification and characterization of uptake systems for glucose and fructose in Rhodococcus jostii RHA1. Mol Microbiol Biotechnol 20:125–136CrossRefGoogle Scholar
  10. Basu P, Snadhu N, Bhatt A, Singh A, Balhana R, Gobe I, Crowhurst NA, Mendum TA, Gao L, Ward JL, Beale MH, McFadden J, Beste DJV (2018) The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis. J Biol Chem 15:5695–5704CrossRefGoogle Scholar
  11. Belanger AE, Hatfull GF (1999) Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J Bacteriol 181:6670–6678PubMedPubMedCentralGoogle Scholar
  12. Belfiore C, Curia MV, Farias ME (2017) Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Rev Argent Microbiol 50(3):311–322PubMedGoogle Scholar
  13. Borodina I, Schöller C, Eliasson A, Nielsen J (2005) Metabolic network analysis of Streptomyces tenebrarius, a Streptomyces species with an active Entner-Doudoroff pathway. Appl Environ Microbiol 71:2294–2302CrossRefGoogle Scholar
  14. Boshoff HI, Barry CE 3rd (2005) Tuberculosis–metabolism and respiration in the absence of growth. Nat Rev Microbiol 3(1):70–80CrossRefGoogle Scholar
  15. Cereijo AE, Asencion Diez MD, Dávila Costa JS, Alvarez HM, Iglesias AA (2016) On the kinetic and allosteric regulatory properties of the ADP-glucose pyrophosphorylase from Rhodococcus jostii: an approach to evaluate glycogen metabolism in oleaginous bacteria. Front Microbiol 7:830CrossRefGoogle Scholar
  16. Chen Y, Ding Y, Yang L, Yu J, Liu G, Wang X, Zhang S, Yu D, Song L, Zhang H, Zhang C, Huo L, Huo C, Wang Y, Du Y, Zhang H, Zhang P, Na H, Xu S, Zhu Y, Xie Z, He T, Zhang Y, Wang G, Fan Z, Yang F, Liu H, Wang X, Zhang X, Zhang MQ, Li Y, Steinbüchel A, Fujimoto T, Cichello S, Yu J, Liu P (2014) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res 42(2):1052–1064CrossRefGoogle Scholar
  17. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544CrossRefGoogle Scholar
  18. Dávila Costa JS, Herrero OM, Alvarez HM, Leichert L (2015) Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1. Microbiology 161(Pt 3):593–610CrossRefGoogle Scholar
  19. Eisenreich W, Dandekar T, Heesemann J, Goebel W (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412CrossRefGoogle Scholar
  20. Elbein AD, Pastuszak I, Tackett AJ, Wilson T, Pan YT (2010) Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen. J Biol Chem 285:9803–9812CrossRefGoogle Scholar
  21. Feisthauer S, Wick LY, Kästner M, Kaschabek SR, Schlömann M, Richnow HH (2008) Differences of heterotrophic 13CO2 assimilation by Pseudomonas knackmussii strain B13 and Rhodococcus opacus 1CP and potential impact on biomarker stable isotope probing. Environ Microbiol 10:1641–1651CrossRefGoogle Scholar
  22. Grzeszik C, Lübbers M, Reh M, Schlegel HG (1997) Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology 143:1271–1286CrossRefGoogle Scholar
  23. Gunnarsson N, Mortensen UH, Sosio M, Nielsen J (2004) Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species. Mol Microbiol 52:895–902CrossRefGoogle Scholar
  24. He Z, Yao Y, Lu Z, Ye Y (2014) Dynamic metabolic and transcriptional profiling of Rhodococcus sp. strain YYL during the degradation of tetrahydrofuran. Appl Environ Microbiol 80:2656–2664CrossRefGoogle Scholar
  25. Heald SC, Brandão PF, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie Van Leeuwenhoek 80:169–183CrossRefGoogle Scholar
  26. Hernández MA, Alvarez HM (2010) Glycogen formation by Rhodococcus species and the effect of inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630. FEMS Microbiol Lett 312:93–99CrossRefGoogle Scholar
  27. Hernández MA, Alvarez HM (2018) Increasing lipid production using an NADP+-dependent malic enzyme from Rhodococcus jostii. Microbiology 165(1):4–14CrossRefGoogle Scholar
  28. Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:600CrossRefGoogle Scholar
  29. Hernández MA, Arabolaza A, Rodríguez E, Gramajo H, Alvarez HM (2013) The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol 97:2119–2130CrossRefGoogle Scholar
  30. Hernández MA, Gleixner G, Sachse D, Alvarez HM (2017) Carbon allocation in Rhodococcus jostii RHA1 in response to disruption and overexpression of nlpR regulatory gene, based on 13C-labeling analysis. Front Microbiol 8:1992CrossRefGoogle Scholar
  31. Hollinshead WD, Henson WR, Abernathy M, Moon TS, Tang YJ (2015) Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel 13C-metabolite fingerprinting. Biotechnol Bioeng 113:91–100CrossRefGoogle Scholar
  32. Juarez A, Villa JA, Lanza VF, Lázaro B, de la Cruz F, Alvarez HM, Moncalián G (2017) Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1. Microb Cell Factories 16:35CrossRefGoogle Scholar
  33. Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KE, Liu Z, Sacchettini JC, Besra G, Bornemann S, Jacobs WR (2010) Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an α-glucan pathway. Nat Chem Biol 6:376–384CrossRefGoogle Scholar
  34. Koliwer-Brandl H, Syson K, van de Weerd R, Chandra G, Appelmelk B, Alber M et al (2016) Metabolic network for the biosynthesis of intra- and extracellular α-Glucans required for virulence of Mycobacterium tuberculosis. PLoS Pathog 12(8):e1005768CrossRefGoogle Scholar
  35. Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotechnol 16:282–290CrossRefGoogle Scholar
  36. Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333CrossRefGoogle Scholar
  37. MacEachran DP, Sinskey AJ (2013) The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Fact 12:104CrossRefGoogle Scholar
  38. Martínková L, Uhnáková B, Pátek M, Nésvera J, Krén V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177CrossRefGoogle Scholar
  39. Masai E, Yamada A, Healy JM, Hatta T, Kimbara K, Fukuda M, Yano K (1995) Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:2079–2085PubMedPubMedCentralGoogle Scholar
  40. McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJM, Holt R, Brinkman FSL, Miyauchi K, Fukuda F, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. PNAS 103:15582–15587CrossRefGoogle Scholar
  41. Meredith LK, Rao D, Bosak T, Klepac-Ceraj V, Tada KR, Hansel CM, Ono S, Prinn RG (2014) Consumption of atmospheric hydrogen during the life cycle of soil-dwelling Actinobacteria. Environ Microbiol 6:226–238CrossRefGoogle Scholar
  42. Nguyen QT, Trinco G, Binda C, Mattevi A, Fraaije MW (2017) Discovery and characterization of an F420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1. Appl Microbiol Biotechnol 101:2831–2842CrossRefGoogle Scholar
  43. Ohhata N, Yoshida N, Egami H, Katsuragi T, Tani Y, Takagi H (2007) An extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4, isolated from crude oil. J Bacteriol 189(19):6824–6831CrossRefGoogle Scholar
  44. Patrauchan MA, Florizone C, Eapen S, Gómez-Gil L, Sethuraman B, Fukuda M, Davies J, Mohn WW, Eltis LD (2008) Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J Bacteriol 190:37–47CrossRefGoogle Scholar
  45. Patrauchan MA, Miyazawa D, LeBlanc JC, Aiga C, Florizone C, Dosanjh M, Davies J, Eltis LD, Mohn WW (2012) Proteomic analysis of survival of Rhodococcus jostii RHA1 during carbon starvation. Appl Environ Microbiol 78:6714–6725CrossRefGoogle Scholar
  46. Peng F, Wang Y, Sun F, Liu Z, Lai Q, Shao Z (2008) A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53. J Appl Microbiol 105:698–705CrossRefGoogle Scholar
  47. Peressutti SR, Alvarez HM, Pucci OH (2003) Dynamic of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution on patagonic soil. Int Biodeterior Biodegrad 52:21–30CrossRefGoogle Scholar
  48. Perry MB, MacLean LL, Patrauchan MA, Vinogradov E (2007) The structure of the exocellular polysaccharide produced by Rhodococcus sp. RHA1. Carbohydr Res 342(15):2223–2229CrossRefGoogle Scholar
  49. Persson O, Valadi A, Nyström T, Farewell A (2007) Metabolic control of the Escherichia coli universal stress protein response through fructose-6-phosphate. Mol Microbiol 65:968–978CrossRefGoogle Scholar
  50. Puckett S, Trujillo C, Wang Z, Eoh H, Ioerger TR, Krieger I, Sacchettini J, Schnappinger DA, Rhee KY, Ehrt S (2017) Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc Natl Acad Sci 114(11):E2225–E2232CrossRefGoogle Scholar
  51. Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794CrossRefGoogle Scholar
  52. Seibold G, Dempf S, Schreiner J, Eikmanns BJ (2007) Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology 153:1275–1285CrossRefGoogle Scholar
  53. Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:742CrossRefGoogle Scholar
  54. Srinivasan V, Morowitz HJ (2006) Ancient genes in contemporary persistent microbial pathogens. Biol Bull 210:1–9CrossRefGoogle Scholar
  55. Tajparast M, Frigon D (2015) Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition. BMC Syst Biol 9:43CrossRefGoogle Scholar
  56. Tang YJ, Shui W, Myers S, Feng X, Bertozzi C, Keasling JD (2009) Central metabolism in Mycobacterium smegmatis during the transition from O(2)-rich to O (2)-poor conditions as studied by isotopomer-assisted metabolite analysis. Biotechnol Lett 31:1233–1240CrossRefGoogle Scholar
  57. Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. PNAS 104:1947–1952CrossRefGoogle Scholar
  58. Vereecke D, Cornelis K, Temmerman W, Jaziri M, Van Montagu M, Holsters M, Goethals K (2002) Chromosomal locus that affects pathogenicity of Rhodococcus fascians. J Bacteriol 184(4):1112–1120CrossRefGoogle Scholar
  59. Warhurst AM, Fewson CA (1994) Biotransformation catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73CrossRefGoogle Scholar
  60. Whyte LG, Slagman SJ, Pietrantonio F, Bourbonnière L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968PubMedPubMedCentralGoogle Scholar
  61. Yam KC, Okamoto S, Roberts JN, Eltis LD (2011) Adventures in Rhodococcus – from steroids to explosives. Can J Microbiol 57(3):155–168CrossRefGoogle Scholar
  62. Yamasaki M, Matsushita Y, Namura M, Nyunoya H, Katayama Y (2002) Genetic and immunochemical characterization of thiocyanate-degrading bacteria in lake water. Appl Environ Microbiol 68:942–946CrossRefGoogle Scholar
  63. Yano T, Yoshida N, Yu F, Wakamatsu M, Takagi H (2015) The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4. Appl Microbiol Biotechnol 99:5627–5637CrossRefGoogle Scholar
  64. Yano T, Funamizu Y, Yoshida N (2016) Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4. Biosci Biotechnol Biochem 80(3):610–613CrossRefGoogle Scholar
  65. Yasuda K, Jojima T, Suda M (2007) Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 77:853–860CrossRefGoogle Scholar
  66. Yoshida N, Hayasaki T, Takagi H (2011) Gene expression analysis of methylotrophic oxidoreductases involved in the oligotrophic growth of Rhodococcus erythropolis N9T-4. Biosci Biotechnol Biochem 75(1):123–127CrossRefGoogle Scholar
  67. Yoshida N, Inaba S, Takagi H (2014) Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4. J Biosci Bioeng 117(1):28–32CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martín A. Hernández
    • 1
    Email author
  • Héctor M. Alvarez
    • 1
  • Mariana P. Lanfranconi
    • 1
  • Roxana A. Silva
    • 1
  • O. Marisa Herrero
    • 1
  • María Soledad Villalba
    • 1
  1. 1.Institute of Bioscience of Patagonia-National Scientific and Technical Research Council (INBIOP-CONICET) and Faculty of Natural Sciences and Health SciencesUniversity of Patagonia San Juan BoscoComodoro RivadaviaArgentina

Personalised recommendations