Advertisement

Interaction of Rhodococcus with Metals and Biotechnological Applications

  • Alessandro PresentatoEmail author
  • Elena Piacenza
  • Martina Cappelletti
  • Raymond J. TurnerEmail author
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 16)

Abstract

In studies of environmental stresses caused by metals, Rhodococcus species are routinely identified as part of a beneficial microbial rhizosphere community. These bacterial strains, inhabiting diverse ecological niches, possess a variety of enzymatic activities to carry out relevant biodegradation reactions, such as degradation of organic pollutants in some cases using them for both carbon and energy. In this context, most Rhodococcus strains have been found to have very high levels of metal resistance. Thus, these microorganisms are not only capable of metabolizing various organic pollutants in the presence of co-contaminating heavy metals, but they can also bioadsorb and/or bioconvert various metals and metalloids [metal(loid)s]. Indeed, some Rhodococcus exploit these metal(loid) compounds to generate biogenic nanoscale materials of intriguing physical-chemical properties, which can find applications in biotechnology.

This book chapter has the focus in overviewing the biotechnological relevance of the Rhodococcus genus relationship with metal(loid)s, the bioprocesses elicited by these microorganisms in handling metal(loid)s’ toxicity, and the importance of these actinomycetes in the context of the bioremediation and bionanotechnology fields.

Keywords

Heavy metals Metalloids Metal toxicity Metal resistance Metal bioremediation Rhodococcus Nanoparticles Nanotechnology 

Notes

Acknowledgments

Natural Science and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for the support of this study (Grant/Award Number: 216887-2010).

References

  1. Adhami E, Aghaei SS, Zolfaghari MR (2017) Evaluation of heavy metals resistance in biofilm cells of native Rhodococcus spp. isolated from soil. Arch Hyg Sci 6:235–243CrossRefGoogle Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828.  https://doi.org/10.1088/0957-4484/14/7/323 CrossRefGoogle Scholar
  3. Ali H, Khanb E, Sajad AM (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881.  https://doi.org/10.1016/j.chemosphere.2013.01.075 CrossRefPubMedGoogle Scholar
  4. Alvarez HM, Steinbüchel A (2010) Physiology, biochemistry and molecular biology of triacylglycerol accumulation by Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus, Microbiology monographs, vol 16. Springer, Heidelberg, pp 263–290.  https://doi.org/10.1007/978-3-642-12937-7_10 CrossRefGoogle Scholar
  5. American Chemistry Society (ACS) NANO(2011) Green nanotechnology challenges and opportunities. http://greennano.org/sites/greennano2.uoregon.edu/files/GCI_WP_GN10.pdf
  6. Ankamwar B, Chaudhary M, Sastry M (2005) Gold nanoparticles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Met Org Nano Met Chem 35:19–26.  https://doi.org/10.1081/SIM-200047527 CrossRefGoogle Scholar
  7. Appenzeller T (1991) The man who dared to think small. Science 254:1300–1300.  https://doi.org/10.1126/science.254.5036.1300 CrossRefPubMedGoogle Scholar
  8. Araki K, Tanaka T (1972) Piezoelectric and elastic properties of single crystalline Se-Te alloys. Appl Phys Expr 11:472–479.  https://doi.org/10.1143/JJAP.11.472 CrossRefGoogle Scholar
  9. Avery SV, Codd GA, Gadd GM (1991) Cesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC 6803. J Gen Microbiol 137:405–413.  https://doi.org/10.1099/00221287-137-2-405 CrossRefGoogle Scholar
  10. Avery SV, Codd GA, Gadd GM (1992) Replacement of cellular potassium by cesium in Chlorella emersonii: differential sensitivity of photoautotrophic and chemoheterotrophic growth. J Gen Microbiol 138:69–76.  https://doi.org/10.1099/00221287-138-169 CrossRefGoogle Scholar
  11. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512.  https://doi.org/10.1007/s00204-008-0313-y CrossRefPubMedGoogle Scholar
  12. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164.  https://doi.org/10.1016/j.colsurfb.2005.11.026 CrossRefPubMedGoogle Scholar
  13. Boguta P, Sokołowska Z (2016) Interactions of Zn(II) ions with humic acids isolated from various type of soils. Effect of pH, Zn concentrations and humic acids chemical properties. PLoS One 11:1–20.  https://doi.org/10.1371/journal.pone.0153626 CrossRefGoogle Scholar
  14. Botero AEC, Torem ML, de Mesquita LMS (2007) Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite. Miner Eng 20:1026–1032.  https://doi.org/10.1016/j.mineng.2007.03.017 CrossRefGoogle Scholar
  15. Brooks AN, Turkarslan S, Beer KD, Lo FY, Baliga NS (2011) Adaptation of cells to new environments. Wiley Interdiscip Rev Syst Biol Med 3:544–561.  https://doi.org/10.1002/wsbm.136 CrossRefPubMedGoogle Scholar
  16. Bueno BYM, Torem ML, Molina F, de Mesquita LMS (2008) Biosorption of lead (II), chromium (III) and copper (II) by R. opacus: equilibrium and kinetic studies. Miner Eng 21:65–75.  https://doi.org/10.1016/j.mineng.2007.08.013 CrossRefGoogle Scholar
  17. Cao G (2004a) Chapter 1: Introduction. In: Cao G (ed) Nanostructures & nanomaterials, synthesis, properties and applications. Imperial College Press, London, pp 1–14CrossRefGoogle Scholar
  18. Cao G (2004b) Chapter 2, Physical chemistry of solid surfaces. In: Cao G (ed) Nanostructures & nanomaterials, synthesis, properties and applications. Imperial College, London, pp 15–48CrossRefGoogle Scholar
  19. Cappelletti M, Fedi S, Zampolli J, Di Canito A, D’ursi P, Orro A, Viti C, Milanesi L, Zannoni D, Di Gennaro P (2016) Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 167:766–773.  https://doi.org/10.1016/j.resmic.2016.06.008 CrossRefPubMedGoogle Scholar
  20. Cayllahua JEB, Torem ML (2010) Biosorption of aluminum ions onto Rhodococcus opacus from wastewaters. Chem Eng J 161:1–8.  https://doi.org/10.1016/j.cej.2010.03.025 CrossRefGoogle Scholar
  21. Centers for Disease Control and Prevention National Institute for Occupational Safety and Health (CDC) (2014) Current strategies for engineering controls in nanomaterial production and downstream handling processes. https://www.cdc.gov/niosh/docs/2014-102/pdfs/2014-102.pdf
  22. Chakraborty J, Dash AR, Das S (2017) Metals and their toxic effects. An introduction to noxious elements. In: Das S, Dash HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC, Boca Raton, FL, pp 3–17. ISBN: 9781498762434CrossRefGoogle Scholar
  23. Chang LW, Magos L, Suzuki T (1996) Toxicology of metals. CRC, Boca Raton, FL. ISBN: 9780873718035Google Scholar
  24. Cole ST, Broch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeir K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544.  https://doi.org/10.1038/31159 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Comte S, Guibaud G, Baudu M (2005) Relation between extraction protocols of the activated sludge extracellular polymeric substances (EPS) and EPS complexation properties. Part I. Comparison of the efficiency of eight EPS extraction properties. Enzyme Microb Technol 38:237–245.  https://doi.org/10.1016/j.enzymictec.2005.06.016 CrossRefGoogle Scholar
  26. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70.  https://doi.org/10.1016/j.progpolymsci.2004.11.002 CrossRefGoogle Scholar
  27. Degen O, Kobayashi M, Shimizu S, Eitinger T (1999) Selective transport of divalent cations by transition metal permeases: the Alcaligenes eutrophus HoxN and the Rhodococcus rhodochrous NhlF. Arch Microbiol 171:139–145.  https://doi.org/10.1007/s002030050 CrossRefPubMedGoogle Scholar
  28. Dobrowolski R, Szcześ A, Czemierska M, Jarosz-Wikołazka A (2017) Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour Technol 225:113–120.  https://doi.org/10.1016/j.biortech.2016.11.040 CrossRefPubMedGoogle Scholar
  29. Doyle RJ, Matthews TH, Streips UN (1980) Chemical basis for the selectivity of metal ions by the Bacillus subtilis wall. J Bacteriol 143:471–480PubMedPubMedCentralGoogle Scholar
  30. Duraipandiyana V, Sasi AH, Islam VHI, Valanarasu M, Ignacimuthu S (2010) Antimicrobial properties of actinomycetes from the soil of Himalaya. J Med Mycol 20:15–20.  https://doi.org/10.1016/j.mycmed.2009.11.002 CrossRefGoogle Scholar
  31. Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692.  https://doi.org/10.1007/s002530051 CrossRefGoogle Scholar
  32. Eitinger T, Friedrich B (1997) Microbial nickel transport and incorporation into hydrogenases. In: Winkelmann G, Carrano CJ (eds) Transition metals in microbial metabolism. Harwood, Amsterdam, pp 235–256Google Scholar
  33. Eitinger T, Wolfram L, Degen O, Anthon C (1997) A Ni2+ binding motif is the basis of high affinity transport of the Alcaligenes eutrophus nickel permease. J Biol Chem 272:17139–17144.  https://doi.org/10.1074/jbc.272.27.17139 CrossRefPubMedGoogle Scholar
  34. Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford.  https://doi.org/10.1016/0269-7491(91)90124-F CrossRefGoogle Scholar
  35. Figueira EMAP, Lima AIG, Pereira SIA (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14.  https://doi.org/10.1139/w04-101 CrossRefPubMedGoogle Scholar
  36. Fleck LC, Bicca FC, Ayub MAZ (2000) Physiological aspects of hydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites. Biotechnol Lett 22:285–289.  https://doi.org/10.1023/A:1005607112566 CrossRefGoogle Scholar
  37. Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1990) Remobilization of toxic heavy metals absorbed to wall-clay composites. Appl Environ Microbiol 56:3191–3209PubMedPubMedCentralGoogle Scholar
  38. Forootanfar H, Zare B, Fasihi-Bam H, Amirpour-Rostami S, America A, Shakibaie M, Nami MT (2014) Biosynthesis and characterization of selenium nanoparticles produced by terrestrial actinomycete Streptomyces microflavus strain FSHJ31. RRJMB 3:47–53. e-ISSN: 2320-3528Google Scholar
  39. Freire-Nordi CS, Vieira AAH, Nakaie CR, Nascimento OR (2005) Effect of polysaccharide capsule of the microalgae Staurastrum iversenii var. americanum on diffusion of charged and uncharged molecules, using EPR technique. Braz J Phys 36:75–82.  https://doi.org/10.1590/S0103-97332006000100013 CrossRefGoogle Scholar
  40. Fu C, Javedan S, Moshiri F, Maier RJ (1994) Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme. Proc Natl Acad Sci USA 91:5099–5103.  https://doi.org/10.1073/pnas.91.11.5099 CrossRefPubMedGoogle Scholar
  41. Fulkerson JF Jr, Garner RM, Mobley HLT (1998) Conserved motifs and residues in the NixA protein of Helicobacter pylori are critical for the high affinity transport of nickel ions. J Biol Chem 273:235–241.  https://doi.org/10.1074/jbc.273.1.235 CrossRefPubMedGoogle Scholar
  42. Gadd GM (1992a) Microbial control of heavy metal pollution. In: Fry J, Gadd GM, Herbert RA, Jones CW, Watson-Craik IA (eds) Forty-eighth symposium of the society for general microbiology. Cambridge Univ. Press, The University of Cardiff, Cardiff, pp 59–88Google Scholar
  43. Gadd GM (1992b) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204.  https://doi.org/10.1111/j.1574-6968.1992.tb14040.x CrossRefPubMedGoogle Scholar
  44. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643.  https://doi.org/10.1099/mic.0.037143-0 CrossRefPubMedGoogle Scholar
  45. Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359.  https://doi.org/10.1016/0167-7799(93)90158-6 CrossRefPubMedGoogle Scholar
  46. Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66Google Scholar
  47. Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256:1425–1427.  https://doi.org/10.1126/science.256.5062.1425 CrossRefPubMedGoogle Scholar
  48. Guibaud G, Bordas F, Saaid A, D’abzac P, Hullebusch EV (2008) Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloid Surf B Biointerfaces 63:48–54.  https://doi.org/10.1016/j.colsurfb.2007.11.002 CrossRefPubMedGoogle Scholar
  49. Gupta P, Diwan B (2017) Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71.  https://doi.org/10.1016/j.btre.2016.12.006 CrossRefGoogle Scholar
  50. Hamelink J, Landrum PF, Bergman H, Benson WH (1994) Bioavailability: physical, chemical and biological interactions. CRC, Boca Raton, FL. ISBN: 9781566700863Google Scholar
  51. Harrison JJ, Ceri H, Stremick CA, Turner RJ (2004) Biofilm susceptibility to metal toxicity. Environ Microbiol 6:1220–1227.  https://doi.org/10.1111/j.1462-2920.2004.00656.x CrossRefPubMedGoogle Scholar
  52. Harrison JJ, Turner RJ, Marques LLR, Ceri H (2005) Biofilms: a new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. Am Sci (6):508–515CrossRefGoogle Scholar
  53. Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938.  https://doi.org/10.1038/nrmicro1774 CrossRefPubMedGoogle Scholar
  54. Hausinger RP (1997) Metallocenter assembly in nickel-containing enzymes. J Biol Inorg Chem 2:279–286.  https://doi.org/10.1007/s007750050 CrossRefGoogle Scholar
  55. Horikoshi S, Serpone N (2013) Chapter 1, General introduction to nanoparticles. In: Horikoshi S, Serpone N (eds) Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley-VCH, Weinheim, pp 1–24CrossRefGoogle Scholar
  56. Jasper P (1978) Potassium transport system of Rhodopseudomonas capsulate. J Bacteriol 133:1314–1322PubMedPubMedCentralGoogle Scholar
  57. Jixian Y, Wei W, Shanshan P, Fang M, Ang L, Dan W, Jie X (2015) Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1. Bioresour Technol 196:533–539.  https://doi.org/10.1016/j.biortech.2015.08.011 CrossRefGoogle Scholar
  58. Kar S, Maity JP, Jean JS, Liu CC, Nath B, Lee YC, Bundschuh J, Chen CY, Li Z (2011) Role of organic matter and humic substances in the binding and mobility of arsenic in a Gangetic aquifer. J Environ Sci Health A 46:1231–1238.  https://doi.org/10.1080/10934529.2011.598796 CrossRefGoogle Scholar
  59. Koch AL (1990) Growth and form of the bacterial cell wall. Am Sci 78:327–341Google Scholar
  60. Komeda H, Kobayashi M, Shimizu S (1997) A novel transporter involved in cobalt uptake. Proc Natl Acad Sci USA 94:36–41.  https://doi.org/10.1073/pnas.94.1.36 CrossRefPubMedGoogle Scholar
  61. Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S (2014) Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol B 140:194–204.  https://doi.org/10.1016/j.jphotobiol.2014.08.001 CrossRefPubMedGoogle Scholar
  62. Lamelas C, Benedetti M, Wilkinson KJ, Slaveykova VI (2006) Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. Chemosphere 65:1362–1370.  https://doi.org/10.1016/j.chemosphere.2006.04.021 CrossRefPubMedGoogle Scholar
  63. Lau TC, Wu XA, Chua H, Qian PY, Wong PK (2005) Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Water Sci Technol 52:63–68CrossRefGoogle Scholar
  64. Ledin M (2000) Accumulation of metals by microorganisms-processes and importance for soil systems. Earth Sci Rev 51:1–31.  https://doi.org/10.1016/S0012-8252(00)00008-8 CrossRefGoogle Scholar
  65. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384.  https://doi.org/10.1038/nrmicro3028 CrossRefPubMedGoogle Scholar
  66. Li X, Xu H, Chen ZS, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater.  https://doi.org/10.1155/2011/270974. Article ID 270974Google Scholar
  67. Liu H, Fang HH (2002) Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng 30:806–811.  https://doi.org/10.1002/bit.10432 CrossRefGoogle Scholar
  68. Manimaran M, Kannabiran K (2017) Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges. Lett Appl Microbiol 64:401–408.  https://doi.org/10.1111/lam.12730 CrossRefPubMedGoogle Scholar
  69. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2016) Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review. Crit Rev Microbiol 42:209–221.  https://doi.org/10.3109/104084X.2014.917069 CrossRefPubMedGoogle Scholar
  70. Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177.  https://doi.org/10.1016/j.envint.2008.07.018 CrossRefGoogle Scholar
  71. Merroun ML, Ben Chekroun K, Arias JM, González-Muñoz MT (2003) Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccharide observation. Chemosphere 52:113–120.  https://doi.org/10.1016/S0045-6535(03)00220-0 CrossRefPubMedGoogle Scholar
  72. Mirimanoff N, Wilkinson KJ (2000) Regulation of Zn accumulation by a freshwater Gram-positive bacterium (Rhodococcus opacus). Environ Sci Technol 34:616–622.  https://doi.org/10.1021/es990744g CrossRefGoogle Scholar
  73. Mowll JL, Gadd GM (1984) Cadmium uptake by Aureobasidium pullulans. J Gen Microbiol 130:279–284.  https://doi.org/10.1099/00221287-130-2-279 CrossRefGoogle Scholar
  74. Newton GL, Arnold K, Price MS, Sherrill C, delCardayre SB, Aharonowitz Y, Cohen G, Davies J, Fahey RC, Davis C (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995.  https://doi.org/10.1128/jb.178.7.1990-1995.1996 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Nies D (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750.  https://doi.org/10.1007/s002530051 CrossRefPubMedGoogle Scholar
  76. Orro A, Cappelletti M, D’Ursi P, Milanesi L, Di Canito A, Zampolli J, Collina E, Decorosi F, Viti C, Fedi S, Presentato A, Zannoni D, Di Gennaro P (2015) Genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 10(10):e0139467.  https://doi.org/10.1371/journal.pone.0139467 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 72:92–94.  https://doi.org/10.1016/j.matlet.2011.12.109 CrossRefGoogle Scholar
  78. Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:5.  https://doi.org/10.4172/2157-7439.1000233 CrossRefGoogle Scholar
  79. Paperi R, Micheletti E, De Philips R (2006) Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. J Appl Microbiol 101:1351–1356.  https://doi.org/10.1111/j.1365-2672.2006.03021.x CrossRefPubMedGoogle Scholar
  80. Park JH, Kim BS, Chon CM (2018) Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation. Chemosphere 191:245–252.  https://doi.org/10.1016/j.chemosphere.2017.10.050 CrossRefPubMedGoogle Scholar
  81. Pau RN, Klipp W, Leimkühler S (1997) Molybdenum transport, processing and gene regulation. In: Winkelmann G, Carrano CJ (eds) Transition metals in microbial metabolism. Harwood, Amsterdam, pp 217–234Google Scholar
  82. Pavel VL, Sobariu DL, Tudorache-Fertu ID, Statescu F, Gaverilescu M (2013) Symbiosis in the environment biomanagement of soils contaminated with heavy metals. Eur J Sci Theol 9:211–224Google Scholar
  83. Perelomov LV, Sarkarb B, Sizovad OI, Chilachava KB, Shvikina AY, Perelomova IV, Atroshchenkoa YM (2018) Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species. Ecotoxicol Environ Saf 151:178–183.  https://doi.org/10.1016/j.ecoenv.2018.01.018 CrossRefPubMedGoogle Scholar
  84. Perminova IV, Hatfield K (2005) Remediation chemistry of humic substances: theory and implications for technology. In: Perminova IV, Hatfield K, Hertcorn N (eds) Use of humic substances to remediate polluted environments: from theory to practice. Springer, Dordrecht, pp 3–36.  https://doi.org/10.1007/1-4020-3252-8_1 CrossRefGoogle Scholar
  85. Perminova IV, Kulikova NA, Zhilin D, Grechischeva M, Kovalevskii DV, Lebedeva GF, Matorin DN, Venediktov PS, Konstantinov AI, Kholodov VA, Petrosyan VS, (2006) Mediating effects of humic substances in the contaminated environments. Concepts, results, and prospects. In: Twardowska I, Allen HE, Haggblom MH, Stefaniak S (Eds) Viable methods of soils and water pollution monitoring, protection and remediation, Krakow, Poland, pp 249–273.  https://doi.org/10.1007/978-1-4020-4728-2_17
  86. Phillips DJ, Rainbow PS (2013) Biomonitoring of trace aquatic contaminants, vol 37. Springer, New York. ISBN: 978-94-011-2122-4Google Scholar
  87. Piacenza E, Presentato A, Turner RJ (2018) Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures. Crit Rev Biotechnol 25:1–20.  https://doi.org/10.1080/07388551.2018.1440525 CrossRefGoogle Scholar
  88. Plette ACC, van Riemsdijk WH, Benedetti MF, van der Wal A (1995) pH dependent charging behavior of isolated cell walls of a Gram-positive soil bacterium. J Colloid Interface Sci. 173:354–363.  https://doi.org/10.1006/jcis.1995.1335 CrossRefGoogle Scholar
  89. Plette ACC, Benedetti MF, Vanriemsdijk WH (1996) Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a Gram-positive soil bacterium. Environ Sci Technol 30:1902–1910.  https://doi.org/10.1021/es950568l CrossRefGoogle Scholar
  90. Pogorelova TE, Ryabchenko LE, Sunzow NI, Yanenko AS (1996) Cobalt-dependent transcription of nitrile hydratase gene in Rhodococcus rhodochrous M8. FEMS Microbiol Lett 144:191–195.  https://doi.org/10.1016/0378-1097(96)00361-8 CrossRefGoogle Scholar
  91. Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2016) Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Fact 15:204.  https://doi.org/10.1186/s12934-016-0602-8 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Presentato A, Cappelletti M, Sansone A, Ferreri C, Piacenza E, Demeter MA, Crognale S, Petruccioli M, Milazzo G, Fedi S, Steinbüchel A, Turner RJ, Zannoni D (2018a) Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the only carbon and energy sources. Front Microbiol 9:672.  https://doi.org/10.3389/fmicb.2018.00672 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018b) Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnol 41:1–8.  https://doi.org/10.1016/j.nbt.2017.11.02 CrossRefGoogle Scholar
  94. Presentato A, Piacenza E, Darbandi A, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018c) Assembly growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Sci Rep.  https://doi.org/10.1038/s41598-018-22320-x
  95. Rao CNR, Muller A, Cheetham AK (2004) Chapter 1, Nanomaterials. In: Rao CNR, Muller A, Cheetham AK (eds) The chemistry of nanomaterials: synthesis, properties and applications. WILEY-VCH, Weinheim, pp 1–11CrossRefGoogle Scholar
  96. Rhoads DB, Epstein W (1977) Energy coupling to net K+ transport in Escherichia coli K-12. J Biol Chem 252:1394–1401PubMedGoogle Scholar
  97. Rodrigues A, Brito A, Janknecht P, Proenca MF, Nogueira R (2009) Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration. J Environ Monit 11:377–382.  https://doi.org/10.1039/B811942B CrossRefPubMedGoogle Scholar
  98. Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235.  https://doi.org/10.1016/S0043-1354(03)00418-4 CrossRefPubMedGoogle Scholar
  99. Sharma SK, Goloubinoff P, Christen P (2011) Non-native proteins as newly identified targets of heavy metals and metalloids. In: Bánfalvi G (ed) Cellular effects of heavy metals. Springer, Heidelberg, pp 263–274.  https://doi.org/10.1007/978-94-007-0428-2_12 CrossRefGoogle Scholar
  100. Sheng PX, Tan LH, Chen JP, Ting YP (2004) Biosorption performance of two brown marine algae for removal of chromium and cadmium. J Disper Sci Technol 25:679–686.  https://doi.org/10.1081/DIS-200027327 CrossRefGoogle Scholar
  101. Smith RL, Maguire ME (1998) Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol 28:217–226.  https://doi.org/10.1046/j.1365-2958.1998.00810.x CrossRefPubMedGoogle Scholar
  102. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84.  https://doi.org/10.1007/s00449-008-0224-6 CrossRefPubMedGoogle Scholar
  103. Stillman MJ (1995) Metallothioneins. Coord Chem Rev 144:461–571.  https://doi.org/10.1016/0010-8545(95)01173-M CrossRefGoogle Scholar
  104. Stratton H, Brooks P, Griffiths P, Seviour R (2002) Cell surface hydrophobicity and mycolic acid composition of Rhodococcus strains isolated from activated sludge foam. J Ind Microbiol Biotechnol 28:264–267.  https://doi.org/10.1038/sj/jim/7000241 CrossRefPubMedGoogle Scholar
  105. Strong PJ, Burgess JE (2008) Treatment methods for wine­related and distillery wastewaters: a review. Bioremediat J 12:70–87.  https://doi.org/10.1080/10889860802060063 CrossRefGoogle Scholar
  106. Subbaiya R, Preetha L, Gayathril S, Swarnalatha WA, Selvam MM (2014) Synthesis and characterization of silver nanoparticles from Rhodococcus-2891 and its antitumor activity against lung cancer cell line (A549). In: International conference on science, engineering and management research (ICSEMR 2014), ISBN: 978-1-4799-7613-3Google Scholar
  107. Suchand Sandeep CS, Samal AK, Pradeep T, Philip R (2010) Optical limiting properties of Te and Ag2Te nanowires. Chem Phys Lett 485:326–330.  https://doi.org/10.1016/j.cplett.2009.12.065 CrossRefGoogle Scholar
  108. Sunitha A, Isaac RSR, Geo S, Sornalekshmi S, Rose A, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed Eng 5:39–45.  https://doi.org/10.5101/nbe.v5i1.p39-45 CrossRefGoogle Scholar
  109. Suresh K, Prabagaran SR, Sengupta S, Shivaji S (2004) Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. J Syst Evol Microbiol 54:1369–1375.  https://doi.org/10.1099/ijs.0.03047-0 CrossRefGoogle Scholar
  110. Tan Y, Yao R, Wang R, Wang D, Wang G, Zheng S (2016) Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Microb Cell Fact 15:157.  https://doi.org/10.1186/s12934-016-0554-z CrossRefPubMedPubMedCentralGoogle Scholar
  111. Tangney P, Fahy S (2002) Density-functional theory approach to ultrafast laser excitation of semiconductors: application to the A1 phonon in tellurium. Phys Rev B 14:279.  https://doi.org/10.1103/PhysRevB.65.054302 CrossRefGoogle Scholar
  112. Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115.  https://doi.org/10.1016/S0966-842X(99)01454-7 CrossRefPubMedGoogle Scholar
  113. Tchounwou P, Newsome C, Williams J, Glass K (2008) Copper-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells. Metal Ions Biol Med 10:285–290Google Scholar
  114. Tomioka N, Uchiyama H, Yagi O (1994) Cesium accumulation and growth characteristics of Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402. Appl Environ Microbiol 60:2227–2231PubMedPubMedCentralGoogle Scholar
  115. Turner RJ (2001) Tellurite toxicity and resistance in Gram-negative bacteria. Recent Res Dev Microbiol 5:69–77Google Scholar
  116. Turner RJ, Weiner JH, Taylor DE (1999) Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology 145:2549–2557.  https://doi.org/10.1099/00221287-145-9-2549 CrossRefPubMedGoogle Scholar
  117. Turner RJ, Borghese R, Zannoni D (2012) Microbial processing of tellurium as a tool in biotechnology. Biotechnol Adv 30:954–963.  https://doi.org/10.1016/j.biotechadv.2011.08.018 CrossRefPubMedGoogle Scholar
  118. Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 4:327–338.  https://doi.org/10.1111/j.1574-6976.2002.tb0018.x CrossRefGoogle Scholar
  119. van der Wal A, Norde W, Zehnder AJB, Lyklema J (1997) Determination of total charge in the cell walls of Gram-positive bacteria. J Colloids Surf B Biointerfaces 9:81–100.  https://doi.org/10.1016/S0927-7765(96)01340-9 CrossRefGoogle Scholar
  120. Vasquez TGP, Botero AEC, de Mesquita LMS, Torem ML (2007) Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Miner Eng 20:939–944.  https://doi.org/10.1016/j.mineng.2007.03.014 CrossRefGoogle Scholar
  121. Vela-Cano M, Castellano-Hinojosa A, Vivas AF, Toledo MVM (2014) Effect of heavy metals on the growth of bacteria isolated from sewage sludge compost tea. Adv Microbial 4:644–655.  https://doi.org/10.4236/aim.2014.410070 CrossRefGoogle Scholar
  122. Volesky B (1990) Biosorption and biosorbents. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton, FL, pp 3–6. ISBN: 9780849349171Google Scholar
  123. Wei X, Fang L, Cai P, Huang Q, Chen H, Liang W, Rong X (2011) Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ Pollut 159:1369–1374.  https://doi.org/10.1016/j.envpol.2011.01.006 CrossRefPubMedGoogle Scholar
  124. Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 4:781–812.  https://doi.org/10.1016/0734-9750(93)9000-6 CrossRefGoogle Scholar
  125. Wolfram L, Friedrich B, Eitinger T (1995) The Alcaligenes eutrophus protein HoxN mediates nickel transport in Escherichia coli. J Bacteriol 177:1840–1843.  https://doi.org/10.1128/jb.177.7.1840-1843.1995 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Xue HB, Stumm W, Sigg L (1988) The binding of heavy metals to algal surfaces. Water Res 22:917–626.  https://doi.org/10.1016/0043-1354(88)90029-2 CrossRefGoogle Scholar
  127. Yuwen L, Wang L (2013) Chapter 11.5, Nanoparticles and quantum dots. In: Devillanova F, Du Mont WW (eds) Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium, 2nd edn. The Royal Society of Chemistry, Cambridge, pp 232–260Google Scholar
  128. Zhang B, Ye X, Dai W, Hou W, Zuo F, Xie Y (2006) Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism. Nanotechnology 17:385–390.  https://doi.org/10.1088/0957-4484/17/2/007 CrossRefGoogle Scholar
  129. Zheng-Bo Y, Qing L, Chuan-chuan L, Tian-hu C, Jin W (2015) Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria. Bioresour Technol 194:399–402.  https://doi.org/10.1016/j.biortech.2015.07.042 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Environmental Microbiology Laboratory, Department of BiotechnologyUniversity of VeronaVeronaItaly
  2. 2.Department of Biological SciencesUniversity of CalgaryCalgaryCanada
  3. 3.Unit of General and Applied Microbiology, Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly

Personalised recommendations