Advertisement

Biology of Triacylglycerol Accumulation by Rhodococcus

  • Héctor M. AlvarezEmail author
  • Alexander Steinbüchel
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 16)

Abstract

Members of the genus Rhodococcus are specialist in the accumulation of triacylglycerols (TAG). Some of them can be considered oleaginous microorganisms since they are able to produce significant amounts of those lipids under certain conditions. In this context, R. opacus strain PD630 and R. jostii RHA1 became models among prokaryotes in this research area. The basic knowledge generated for rhodococci could be also extrapolated to related microorganisms with clinical importance, such as mycobacteria. The biosynthesis and accumulation of TAG by species of the genus Rhodococcus and other actinomycetes seems to be a process linked to the stationary growth phase or as a response to stress. The chemical structure of rhodococcal TAG can be controlled by the composition of the carbon source used. The biosynthesis and accumulation of novel TAG containing unusual components, such as aromatic and isoprenoid fatty acids, by members of Rhodococcus and related genera has been reported. The low specificity of wax ester synthase/diacylglycerol acyltransferase enzymes (WS/DGAT), which catalyze TAG biosynthesis in prokaryotes, may contribute to the high variability of TAG composition. The occurrence of genes coding for WS/DGAT enzymes is highly redundant in rhodococcal genomes. The enrichment of genes and enzymes involved in TAG metabolism in rhodococci suggests an important role of these lipids in the physiology of these microorganisms. Genomic, transcriptomic, and proteomic data from TAG-accumulating rhodococci are now available, and some genes coding for enzymes of the central metabolism, the Kennedy pathway, lipid transporter proteins, structural lipid inclusion body-associated proteins, and transcriptional regulatory proteins have been identified and characterized. This article aims to summarize the most relevant achievements of basic research in this field, including the most recent knowledge emerged from studies on TAG accumulation by rhodococci.

Keywords

Rhodococcus Triacylglycerols Metabolism Biotechnology 

References

  1. Adamczak M, Bornscheuer UT, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111:808–813CrossRefGoogle Scholar
  2. Alvarez HM (2003) Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeter Biodegr 52:35–42CrossRefGoogle Scholar
  3. Alvarez HM (2006) Bacterial triacylglycerols. In: Welson LT (ed) Triglycerides and cholesterol research, vol 6. Nova Science Publishers, New York, pp 159–176Google Scholar
  4. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alvarez HM, Pucci OH, Steinbüchel A (1997a) Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol 47:132–139CrossRefGoogle Scholar
  7. Alvarez HM, Kalscheuer R, Steinbüchel A (1997b) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99:239–246CrossRefGoogle Scholar
  8. Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223PubMedPubMedCentralCrossRefGoogle Scholar
  9. Alvarez HM, Souto MF, Viale A, Pucci OH (2001) Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Microbiol Lett 200:195–200PubMedCrossRefPubMedCentralGoogle Scholar
  10. Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiology (SGM) 148:1407–1412CrossRefGoogle Scholar
  11. Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:75–86PubMedPubMedCentralCrossRefGoogle Scholar
  12. Alvarez AF, Alvarez HM, Kalscheuer R, Wältermann M, Steinbüchel A (2008) Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleogenous bacterium Rhodococcus opacus PD630. Microbiology (SGM) 154:2327–2335CrossRefGoogle Scholar
  13. Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Rep 6:24985PubMedPubMedCentralCrossRefGoogle Scholar
  14. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  15. Anderson AJ, Williams D, Dawes EA, Ewing D (1995) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Rhodococcus ruber. Can J Microbiol 41:4–13CrossRefGoogle Scholar
  16. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35PubMedCrossRefPubMedCentralGoogle Scholar
  17. Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582PubMedPubMedCentralCrossRefGoogle Scholar
  18. Banchio C, Gramajo H (2002) A stationary-phase acyl-coenzyme A synthetase of Streptomyces coelicolor A3 (2) is necessary for the normal onset of antibiotic production. Appl Environ Microbiol 68:4240–4246PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bequer Urbano S, Albarracín VH, Ordoñez OF, Farías ME, Alvarez HM (2013) Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium. Extremophiles 17:217–227PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bloch K (1977) Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol Relat Areas Mol Biol 45:1–84PubMedPubMedCentralGoogle Scholar
  21. Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L (2003) Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol 52:579–583Google Scholar
  22. Brennan PJ (1988) Mycobacterium and other actinomycetes. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 203–298Google Scholar
  23. Castro AR, Rocha I, Alves MM, Pereira MA (2016) Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express 6:35PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen Y, Ding Y, Yang L, Yu J, Liu G, Wang X, Zhang S, Yu D, Song L, Zhang H, Zhang C, Huo L, Huo C, Wang Y, Du Y, Zhang H, Zhang P, Na H, Xu S, Zhu Y, Xie Z, He T, Zhang Y, Wang G, Fan Z, Yang F, Liu H, Wang X, Zhang X, Zhang MQ, Li Y, Steinbüchel A, Fujimoto T, Cichello S, Yu J, Liu P (2014) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res 42:1052–1064PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cronan JE Jr, Waldrop GL (2002) Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41:407–435PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dahlqvist A, Stahl U, Lanman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 12:6487–6492CrossRefGoogle Scholar
  27. Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030PubMedPubMedCentralCrossRefGoogle Scholar
  28. Da Silva PDMP, Lima F, Alves MM, Bijmans MFM, Pereira MA (2016) Valorization of lubricant-based wastewater for bacterial neutral lipids production: growth-linked biosynthesis. Water Res 101:17–24PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dávila Costa JS, Herrero OM, Alvarez HM, Leichert L (2015) Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1. Microbiology 161:593–610CrossRefGoogle Scholar
  30. Dávila Costa JS, Silva RA, Leichert L, Alvarez HM (2017) Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen. Microbiology (SGM) 163:343–354CrossRefGoogle Scholar
  31. Ding Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, Peng G, Chen Y, Zhang H, Yu J, Hang H, Wu P, Yang F, Yang H, Steinbüchel A, Liu P (2012) Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res 53:399–3411PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1325–1238CrossRefGoogle Scholar
  33. Feisthauer S, Wick LY, Kästner M, Kaschabek SR, Schlömann M, Richnow HH (2008) Differences of heterotrophic 13CO2 assimilation by Pseudomonas knackmussii strain B13 and Rhodococcus opacus 1CP and potential impact on biomarker stable isotope probing. Environ Microbiol 10:1641–1651PubMedPubMedCentralCrossRefGoogle Scholar
  34. Garton NJ, Christensen H, Minnikin DE, Adegbola RA, Barer MR (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148:2951–2958PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agroindustrial wastes. World J Microbiol Biotechnol 24:1703–1711CrossRefGoogle Scholar
  36. Hauschild P, Röttig A, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2017) Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol 101:2203–2216PubMedCrossRefPubMedCentralGoogle Scholar
  37. Heald SC, Brandão PF, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie Van Leeuwenhoek 80:169–183CrossRefGoogle Scholar
  38. Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 12(9):600CrossRefGoogle Scholar
  39. Hernández MA, Alvarez HM (2010) Glycogen formation by Rhodococcus species and effect of inhibition of lipid biosynthesis on glycogen accumulation in R. opacus PD630. FEMS Microbiol Lett 312:93–99CrossRefGoogle Scholar
  40. Hernández MA, Arabolaza A, Rodríguez E, Gramajo H, Alvarez HM (2013) The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol 97:2119–2130CrossRefGoogle Scholar
  41. Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 99:2191–2207PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hernández MA, Lara J, Gago G, Gramajo H, Alvarez HM (2017a) The pleiotropic transcriptional regulator NlpR contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci. Mol Microbiol 103:366–385PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hernández MA, Gleixner G, Sachse D, Alvarez HM (2017b) Carbon allocation in Rhodococcus jostii RHA1 in response to disruption and overexpression of nlpR regulatory gene, based on 13C-labeling analysis. Front Microbiol 8:1992PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hernández MA, Alvarez HM (2018) Increasing lipid production using an NADP+-dependent malic enzyme from Rhodococcus jostii. Microbiology (SGM).  https://doi.org/10.1099/mic.0.000736 PubMedCrossRefPubMedCentralGoogle Scholar
  45. Herrero OM, Alvarez HM (2016) Whey as a renewable source for lipid production by Rhodococcus strains: physiology and genomics of lactose and galactose utilization. Eur J Lipid Sci Technol 118:262–272CrossRefGoogle Scholar
  46. Herrero OM, Moncalián G, Alvarez HM (2016) Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production. Microbiology (SGM) 162:384–397CrossRefGoogle Scholar
  47. Hetzler S, Steinbüchel A (2013) Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Appl Environ Microbiol 79:3122–3125PubMedPubMedCentralCrossRefGoogle Scholar
  48. Holtzapple E, Schmidt-Dannert C (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J Bacteriol 189:3804–3812PubMedPubMedCentralCrossRefGoogle Scholar
  49. Huang L, Zhao L, Zan X, Song Y, Ratledge C (2016) Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases. Biotechnol Lett 38:999–1008PubMedCrossRefPubMedCentralGoogle Scholar
  50. Huisman GW, Siegele DA, Zambrano MM, Kolter R (1993) Morphological and physiological changes during stationary phase. In: Neidhardt FC, Ingraham JL, Low KB, Magsanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 2. American Society for Microbiology, Washington DC, pp 1672–1682Google Scholar
  51. Juarez A, Villa JA, Lanza VF, Lázaro B, de la Cruz F, Alvarez HM, Moncalián G (2017) Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1. Microb Cell Factories 16:35CrossRefGoogle Scholar
  52. Kaddor C, Biermann K, Kalscheuer R, Steinbüchel A (2009) Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein. Appl Microbiol Biotechnol 84:143–155PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous rhodococci. Appl Microbiol Biotechnol 93:891–900PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kurosawa K, Plassmeier J, Kalinowski J, Rückert C, Sinskey AJ (2015) Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Metab Eng 30:89–95PubMedCrossRefPubMedCentralGoogle Scholar
  57. Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333PubMedPubMedCentralCrossRefGoogle Scholar
  58. Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121:250–258PubMedPubMedCentralGoogle Scholar
  59. MacEachran DP, Prophete ME, Sinskey AJ (2010) The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. Appl Environ Microbiol 76:7217–7225PubMedPubMedCentralCrossRefGoogle Scholar
  60. MacEachran DP, Sinskey AJ (2013) The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Factories 12:104CrossRefGoogle Scholar
  61. Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology (SGM) 140:931–943CrossRefGoogle Scholar
  62. Peressutti SR, Alvarez HM, Pucci OH (2003) Dynamic of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution on patagonic soil. Int Biodeterior Biodegrad 52:21–30CrossRefGoogle Scholar
  63. Peng F, Wang Y, Sun F, Liu Z, Lai Q, Shao Z (2008) A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53. J Appl Microbiol 105:698–705PubMedPubMedCentralCrossRefGoogle Scholar
  64. Pieper U, Steinbüchel A (1992) Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of the Gram-positive bacterium Rhodococcus ruber. FEMS Microbiol Lett 96:73–80CrossRefGoogle Scholar
  65. Pucci OH, Bak MA, Peressutti SR, Klein SR, Härtig C, Alvarez HM, Wünsche L (2000) Influence of crude oil contamination on the bacterial community of semi-arid soils of Patagonia (Argentina). Acta Biotechnol 10:129–146CrossRefGoogle Scholar
  66. Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182–196PubMedCrossRefPubMedCentralGoogle Scholar
  67. Rontani JF, Mouzdahir A, Michotey V, Caumette P, Bonin P (2003) Production of a polyunsaturated isoprenoid wax ester during aerobic metabolism of squalene by Marinobacter squalenivorans sp. nov. Appl Environ Microbiol 69:4167–4176PubMedPubMedCentralCrossRefGoogle Scholar
  68. Röttig A, Wenning L, Bröker D, Steinbüchel A (2010) Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 85:1713–1733PubMedCrossRefPubMedCentralGoogle Scholar
  69. Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2016) Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol 225:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  70. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. Croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240PubMedCrossRefPubMedCentralGoogle Scholar
  71. Shields-Menard SA, Amirsadeghi M, Sukhbaatar B, Revellame E, Hernandez R, Donaldson JR, French WT (2015) Lipid accumulation by Rhodococcus rhodochrous grown on glucose. J Ind Microbiol Biotechnol 42:693–699PubMedCrossRefPubMedCentralGoogle Scholar
  72. Shweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517CrossRefGoogle Scholar
  73. Silva RA, Grossi V, Alvarez HM (2007) Biodegradation of phytane (2,6,10,14-tetramethylhexadecane) and accumulation of related isoprenoid wax esters by Mycobacterium ratisbonense strain SD4 under nitrogen-starved conditions. FEMS Microbiol Lett 272:220–228PubMedCrossRefPubMedCentralGoogle Scholar
  74. Silva RA, Grossi V, Olivera N, Alvarez HM (2010) Characterization of the indigenous Rhodococcus sp. 602, a strain able to accumulate triacylglycerides from naphthyl-compounds under nitrogen-starved conditions. Res Microbiol 161(3):198–207PubMedCrossRefPubMedCentralGoogle Scholar
  75. Skujins J (1984) Microbial ecology of desert soils. Adv Microb Ecol 7:49–91CrossRefGoogle Scholar
  76. Sorger D, Daum G (2002) Synthesis of triacylglycerols by the acyl-Coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J Bacteriol 184:519–524PubMedPubMedCentralCrossRefGoogle Scholar
  77. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. MacMillan, London, pp 123–213CrossRefGoogle Scholar
  78. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  79. Stöveken T, Steinbüchel A (2008) Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed 47:3688–3694CrossRefGoogle Scholar
  80. Uthoff S, Bröker D, Steinbüchel A (2009) Current state and perspectives of producing biodiesel-like compounds by biotechnology. Microb Biotechnol 2:551–565PubMedPubMedCentralCrossRefGoogle Scholar
  81. Villalba MS, Hernández MA, Silva RA, Alvarez HM (2013) Genome sequences of triacylglycerol in Rhodococcus as a platform for comparative genomics. J Mol Biochem 2:94–105Google Scholar
  82. Villalba MS, Alvarez HM (2014) Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Microbiology (SGM) 160:1523–1532CrossRefGoogle Scholar
  83. Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot scale. Appl Microbiol Biotechnol 55:547–555CrossRefGoogle Scholar
  84. Wakil SJ, Stoops JK, Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52:537–579PubMedCrossRefPubMedCentralGoogle Scholar
  85. Wältermann M, Steinbüchel A (2000) In vitro effects of sterculic acid on lipid biosynthesis in Rhodococcus opacus strain PD630 and isolation of mutants defective in fatty acid desaturation. FEMS Microbiol Lett 190:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  86. Wältermann M, Luftmann H, Baumeister D, Kalscheuer R, Steinbüchel A (2000) Rhodococcus opacus PD630 as a source of high-value single cell oil? Isolation and characterisation of triacylglycerols and other storage lipids. Microbiology (SGM) 146:1143–1149CrossRefGoogle Scholar
  87. Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla H-J, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763PubMedCrossRefPubMedCentralGoogle Scholar
  88. Wältermann M, Stöveken T, Steinbüchel A (2007) Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochimie 89:230–242PubMedCrossRefPubMedCentralGoogle Scholar
  89. Warton B, Matthiessen JN, Roper MM (2001) The soil organisms responsible for the enhanced biodegradation of metam sodium. Biol Fertil Soils 34:264–269CrossRefGoogle Scholar
  90. Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CHW (1998) Biodegradation of variable-chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584PubMedPubMedCentralGoogle Scholar
  91. Xiong X, Wang X, Chen S (2012) Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl Environ Microbiol 78:5483–5491PubMedPubMedCentralCrossRefGoogle Scholar
  92. Xiong X, Wang X, Chen S (2016) Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production. J Ind Microbiol Biotechnol 43:1017–1025PubMedCrossRefPubMedCentralGoogle Scholar
  93. Zhang C, Yang L, Ding Y, Wang Y, Lan L, Ma Q, Chi X, Wei P, Zhao Y, Steinbüchel A, Zhang H, Liu P (2017) Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nat Commun 8:15979PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zimhony O, Vilchèze C, Jacobs WR Jr (2004) Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J Bacteriol 186:4051–4055PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Bioscience of Patagonia-National Scientific and Technical Research Council (INBIOP-CONICET) and Faculty of Natural Sciences and Health SciencesUniversity of Patagonia San Juan BoscoComodoro RivadaviaArgentina
  2. 2.Institut für Molekulare Mikrobiologie und Biotechnologie der Westfälischen Wilhelms-UniversitätMünsterGermany
  3. 3.Environmental Sciences DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations