Production of Trehalolipid Biosurfactants by Rhodococcus

  • Maria S. KuyukinaEmail author
  • Irena B. Ivshina
Part of the Microbiology Monographs book series (MICROMONO, volume 16)


Members of the genus Rhodococcus produce biosurfactants in response to the presence of liquid hydrocarbons in the growth medium. These biosurfactants are predominantly cell-bound glycolipids containing trehalose as the carbohydrate. Physiological roles of these glycolipids are diverse and involve participation in the uptake of water-insoluble substrates, promotion of the cell adhesion to hydrophobic surfaces, and increased rhodococcal resistance to physicochemical influences. In terms of surfactant characteristics (e.g., surface and interfacial tension, critical micelle concentration, emulsifying activity), Rhodococcus biosurfactants compete favorably with other microbial and synthetic surfactants. Additionally, biological activities of trehalolipids from rhodococci were revealed, including immunomodulating, antitumor, and anti-adhesive properties. Recently developed optimization procedures for their biosynthesis and recovery would broaden potential applications of Rhodococcus biosurfactants in new advanced technologies, such as environmental bioremediation, improved material construction, and biomedicine. The present chapter summarizes recent research on Rhodococcus biosurfactants and focuses on biosynthesis features, physicochemical and bioactive properties, and their potential applications.



This research was funded by the Ministry of Science and Higher Education of the Russian Federation (State Task Registration No. 01201353246 for IEGM and State Task 6.3330.2017/4.6 for PSU).


  1. Abdelhay A, Magnin J-P, Gondrexon N, Baup S, Willison J (2009) Adaptation of a Mycobacterium strain to phenanthrene degradation in a biphasic culture system: influence on interfacial area and droplet size. Biotechnol Lett 31:57–63PubMedCrossRefGoogle Scholar
  2. Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:75–86PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aranda FJ, Teruel JA, Espuny MJ, Marqués A, Manresa Á, Palacios-Lidon E, Ortiz A (2007) Domain formation by a Rhodococcus sp. biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes. Biochim Biophys Acta 1768:2596–2604PubMedCrossRefGoogle Scholar
  4. Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 7:3195–3204CrossRefGoogle Scholar
  5. Baeva TA, Gein SV, Kuyukina MS, Ivshina IB, Kochina OA, Chereshnev VA (2014) Effect of glycolipid Rhodococcus biosurfactant on secretory activity of neutrophils in vitro. Bull Exp Biol Med 157:238–242PubMedCrossRefGoogle Scholar
  6. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  7. Batrakov SG, Rozynov BV, Koronelli TV, Bergelson LD (1981) Two novel types of trehalose lipids. Chem Phys Lipids 29:241–266CrossRefGoogle Scholar
  8. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422PubMedCrossRefGoogle Scholar
  9. Bicca FC, Fleck LC, Ayub ZMA (1999) Production of biosurfactant bt hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev Microbiol 30:231–236CrossRefGoogle Scholar
  10. Billingsley KA, Backus SM, Wilson S, Singh A, Ward OP (2002) Remediation of PCBs in soil by surfactant washing and biodegradation in the wash by Pseudomonas sp. LB400. Biotechnol Lett 24:1827–1832CrossRefGoogle Scholar
  11. Biosurfactants market estimated to be worth $5.52 bn by 2022 (2018). Focus Surfactants 2018(2):4.
  12. Boffa V, Perrone DG, Magnacca G, Montoneri E (2014) Role of a waste-derived polymeric biosurfactant in the sol–gel synthesis of nanocrystalline titanium dioxide. Ceram Int 40:12161–12169CrossRefGoogle Scholar
  13. Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele J-P (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428PubMedCrossRefGoogle Scholar
  14. Bryant F (1990) Improved method for the isolation of biosurfactant glycolipids from Rhodococcus sp. strain H13A. Appl Environ Microbiol 56:494–149Google Scholar
  15. Cai Q, Zhang B, Chen B, Zhu Z, Lin W, Cao T (2014) Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Mar Pollut Bull 86:402–410PubMedCrossRefGoogle Scholar
  16. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266PubMedCrossRefGoogle Scholar
  17. Chereshnev VA, Gein SV, Baeva TA, Galkina TV, Kuyukina MS, Ivshina IB (2010) Modulation of cytokine secretion and oxidative metabolism of innate immune effectors by Rhodococcus biosurfactant. Bull Exp Biol Med 149:734–738PubMedCrossRefGoogle Scholar
  18. Choi K-S, Kim S-H, Lee T-H (1999) Purification and characterization of biosurfactant from Tsukamurella sp. 26A. J Microbiol Biotechnol 9:32–38Google Scholar
  19. Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929PubMedCrossRefGoogle Scholar
  20. Cooper DG, Zajic JE, Gerson DF (1979) Production of surface-active lipids by Corynebacterium lepus. Appl Environ Microbiol 37:4–10PubMedPubMedCentralGoogle Scholar
  21. Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel contaminated soil by microorganisms immobilised in a polyvinyl alcohol cryogel. Int Biodeterior Biodegrad 54:167–174CrossRefGoogle Scholar
  22. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedPubMedCentralGoogle Scholar
  23. De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208PubMedCrossRefGoogle Scholar
  24. Deshpande S, Shiau BJ, Wade D, Sabatini DA, Harwell JH (1999) Surfactant selection for enhancing ex situ soil washing. Wat Res 33:351–360CrossRefGoogle Scholar
  25. Espuny MJ, Egido S, Mercade ME, Manresa A (1995) Characterization of trehalose tetraester produced by a waste lube oil degrader Rhodococcus sp. Toxicol Environ Chem 48:83–88CrossRefGoogle Scholar
  26. Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627CrossRefGoogle Scholar
  27. Gein SV, Kuyukina MS, Ivshina IB, Baeva TA, Chereshnev VA (2011) In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology 63:559–566PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gesheva V, Stackebrandt E, Vasileva-Tonkova E (2010) Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr Microbiol 61:112–117PubMedCrossRefGoogle Scholar
  29. Gudina EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharm Sci 34:667–675PubMedCrossRefGoogle Scholar
  30. Haba E, Bresco O, Ferrer C, Marqués A, Busquets M, Manresa A (2000) Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzym Microb Technol 26:40–44CrossRefGoogle Scholar
  31. Haddadin MSY, Arqoub AAA, Reesh IA, Haddadin J (2009) Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energy Convers Manag 50:983–990CrossRefGoogle Scholar
  32. Hoq MM, Suzutani T, Toyoda T, Horiike G, Yoshida I, Azuma M (1997) Role of γδ TCRM lymphocytes in the augmented resistance of trehalose 6,6-dimycolate-treated mice to influenza virus infection. J Gen Virol 78:1597–1603PubMedCrossRefGoogle Scholar
  33. Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79:7082–7090PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ivshina I, Kostina L, Krivoruchko A, Kuyukina M, Peshkur T, Anderson P, Cunningham C (2016) Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J Hazard Mater 312:8–17PubMedCrossRefPubMedCentralGoogle Scholar
  35. Ivshina IB, Kuyukina MS, Kostina LV (2013a) Adaptive mechanisms of nonspecific resistance to heavy metal ions in alkanotrophic actinobacteria. Russ J Ecol 44:123–130CrossRefGoogle Scholar
  36. Ivshina IB, Kuyukina MS, Krivoruchko AV (2017) Hydrocarbon-oxidizing bacteria and their potential in eco-biotechnology and bioremediation. In: Kurtböke I (ed) Microbial resources: from functional existence in nature to industrial applications. Elsevier, London, pp 121–148CrossRefGoogle Scholar
  37. Ivshina IB, Kuyukina MS, Krivoruchko AV, Barbe V, Fischer C (2014) Draft genome sequence of propane and butane oxidizing actinobacterium Rhodococcus ruber IEGM 231. Genome Announc 2:6CrossRefGoogle Scholar
  38. Ivshina IB, Kuyukina MS, Krivoruchko AV, Plekhov OA, Naimark OB, Podorozhko EA, Lozinsky VI (2013b) Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust. Appl Microbiol Biotechnol 97:5315–5327PubMedCrossRefGoogle Scholar
  39. Ivshina IB, Kuyukina MS, Philp JC, Christofi N (1998) Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J Microbiol Biotechnol 14:711–717CrossRefGoogle Scholar
  40. Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama S (2000) Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66:5073–5077PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kacem R, De Sousa-D’Auria C, Tropis M, Chami M, Gounon P, Leblon G, Houssin C, Daffé M (2004) Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Microbiology 150:73–84PubMedCrossRefGoogle Scholar
  42. Kamenskikh TN, Kuyukina MS, Ivshina IB (2004) Some features in preserving actinobacteria of the genus Rhodococcus. Perm Univ Her Biol (2):110–113Google Scholar
  43. Kanga SA, Bonner JS, Page CA, Mills MA, Autenrieth RL (1997) Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactant. Environ Sci Technol 31:556–561CrossRefGoogle Scholar
  44. Kavyanifard A, Ebrahimipour G, Ghasempour A (2016) Structure characterization of a methylated ester biosurfactant produced by a newly isolated Dietzia cinnamea KA1. Microbiology 85(4):430–435CrossRefGoogle Scholar
  45. Kim J-S, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V (1990) Microbial glycolipid pro duction under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266CrossRefGoogle Scholar
  46. Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem 31:249–253PubMedCrossRefGoogle Scholar
  47. Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid bio surfactants – from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201PubMedCrossRefPubMedCentralGoogle Scholar
  48. Konishi M, Nishi S, Fukuoka T, Kitamoto D, Watsuji T-O, Nagano Y, Yabuki A, Nakagawa S, Hatada Y, Horiuchi J (2014) Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Mar Biotechnol 16:484–493PubMedCrossRefGoogle Scholar
  49. Kosaric N (1992) Biosurfactants in industry. Pure Appl Chem 64:1731–1737CrossRefGoogle Scholar
  50. Kretschmer A, Wagner F (1983) Characterization of biosynthetic intermediates of trehalose dicorynomycolates from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864–870Google Scholar
  51. Kundu D, Hazra C, Dandi N, Chaudhari A (2013) Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24:775–793CrossRefGoogle Scholar
  52. Kurane R, Hatamochi K, Kakuno T, Kiyohara M, Tajima T, Hirano M, Taniguchi Y (1995) Chemical structure of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci Biotechnol Biochem 59:1652–1656CrossRefGoogle Scholar
  53. Kuyukina MS, Ivshina IB, Baeva TA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32:559–568CrossRefGoogle Scholar
  54. Kuyukina MS, Ivshina IB, Gavrin YA, Podorozhko EA, Lozinsky VI, Jeffree CE, Philp JC (2006) Immobilization of hydrocarbon-oxidizing bacteria in poly(vinyl alcohol) cryogels hydrophobized using a biosurfactant. J Microbiol Methods 65:596–603PubMedCrossRefGoogle Scholar
  55. Kuyukina MS, Ivshina IB, Gein SV, Baeva TA, Chereshnev VA (2007) In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull Exp Biol Med 144:326–330PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kuyukina MS, Ivshina IB, Korshunova IO, Stukova GI, Krivoruchko AV (2016) Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 6:14. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kuyukina MS, Ivshina IB, Philp JC, Christofi N, Dunbar SA, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46:149–156PubMedCrossRefGoogle Scholar
  59. Kuyukina MS, Ivshina IB, Ritchkova MI, Chumakov OB (2000) Effect of cell lipid composition on the formation of non-specific antibiotic resistance in alkanotrophic rhodococci. Microbiology 69:51–57CrossRefGoogle Scholar
  60. Lang S (2002) Biological amphiphiles microbial biosurfactants. Curr Opin Colloid Interface Sci 7:12–20CrossRefGoogle Scholar
  61. Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 74:59–70CrossRefGoogle Scholar
  62. Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339PubMedPubMedCentralCrossRefGoogle Scholar
  63. LeBlanc JC, Gonçalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636PubMedPubMedCentralCrossRefGoogle Scholar
  64. Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121PubMedCrossRefGoogle Scholar
  65. Makkar RS, Rockne KJ (2003) Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 22:2280–2292PubMedCrossRefGoogle Scholar
  66. Malavenda R, Rizzo C, Michaud L, Gerçe B, Bruni V, Syldatk C, Hausmann R, Giudice AL (2015) Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol 38:1565–1574CrossRefGoogle Scholar
  67. Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565PubMedCrossRefGoogle Scholar
  68. Marqués AM, Pinazo Farfan AM, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117PubMedCrossRefGoogle Scholar
  69. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198PubMedCrossRefGoogle Scholar
  70. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166PubMedPubMedCentralGoogle Scholar
  71. Nguyen L, Chinnapapagari S, Thompson CJ (2005) FbpA-dependent biosynthesis of trehalose di mycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial mor phology of Mycobacterium smegmatis. J Bacteriol 187:6603–6611PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nitschke M, Silva SSE (2016) Recent food applications of microbial surfactants. Crit Rev Food Sci Nutr 58:631–638CrossRefGoogle Scholar
  73. Niescher VW, Lang S, Kaschabek SR, Schlömann M (2006) Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Appl Microbiol Biotechnol 70:605–611PubMedCrossRefGoogle Scholar
  74. Noordman WH, Wachter JHJ, de Boer GJ, Janssen DB (2002) The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotechnol 94:195–212PubMedCrossRefGoogle Scholar
  75. Ochoa-Loza FJ, Artiola JF, Maier RM (2001) Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J Environ Qual 30:479–485PubMedCrossRefGoogle Scholar
  76. Ortiz A, Teruel JA, Espuny MJ, Marqués A, Manresa A, Aranda FJ (2008) Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim Biophys Acta 1778:2806–2813PubMedCrossRefGoogle Scholar
  77. Ortiz A, Teruela JA, Espuny MJ, Marqués A, Manresa A, Aranda FJ (2009) Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes. Chem Phys Lipids 158:46–53PubMedCrossRefGoogle Scholar
  78. Pacwa-Płociniczak M, Płociniczak T, Iwan J, Zarska M, Chorazewski M, Dzida M, Piotrowska-Seget Z (2016) Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. J Environ Manag 168:175–184CrossRefGoogle Scholar
  79. Page CA, Bonner JS, Kanga SA, Mills MA, Autenrieth RL (1999) Biosurfactant solubilization of PAHs. Environ Eng Sci 16:465–474CrossRefGoogle Scholar
  80. Pal MP, Vaidya BK, Desai KM, Joshi RM, Nene SN, Kulkarni BD (2009) Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach. J Ind Microbiol Biotechnol 36:747–756PubMedCrossRefGoogle Scholar
  81. Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci 138:24–58PubMedCrossRefGoogle Scholar
  82. Passeri A, Lang S, Wagner F, Wray V (1991) Marine biosurfactants, II. Production and characterization of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK 1. J Biosci 46:204–209Google Scholar
  83. Paulino BN, Pessôa MG, Mano MC, Molina G, Neri-Numa IA, Pastore GM (2016) Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 100:10265–10293PubMedCrossRefGoogle Scholar
  84. Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36:277–289PubMedCrossRefGoogle Scholar
  85. Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611PubMedCrossRefGoogle Scholar
  86. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563PubMedCrossRefGoogle Scholar
  87. Philp JC, Kuyukina MS, Ivshina IB, Dunbar SA, Christofi N, Lang S, Wray V (2002) Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 59:318–324PubMedCrossRefGoogle Scholar
  88. Pirog TP, Shevchuk TA, Voloshina IN, Karpenko EV (2004) Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl Biochem Microbiol 40:470–475CrossRefGoogle Scholar
  89. Pirog TP, Shulyakova M, Sofilkanych A, Shevchuk T, Mashchenko O (2015) Biosurfactant synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMVB-7241 and Nocardia vaccinii IMV B-7405 on byproduct of biodiesel production. Food Bioprod Process 93:11–18CrossRefGoogle Scholar
  90. Rapp P, Bock H, Urban E, Wagner F, Gebetsbergwer W, Schulzw W (1977) Mikrobielle Bildung eines Trehaloselipids und seine Anwendung in Modellversuchen zum Tensidfluten von Erdollagerstatten. Dechema-Monographien 81:177–186Google Scholar
  91. Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115:491–503CrossRefGoogle Scholar
  92. Rapp P, Gabriel-Jürgens LHE (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149:2879–2890PubMedCrossRefGoogle Scholar
  93. Retzinger GS, Meredith SC, Takayama K, Hunter RL, Kezdy FJ (1981) The role of surface in the biological activities of trehalose 6,6-dimicolate. J Biol Chem 256:8208–8216PubMedGoogle Scholar
  94. Ristau E, Wagner F (1983) Formation of novel anionic trehalose tetraesters from Rhodococcus erythropolis under growth-limiting conditions. Biotechnol Lett 5:95–100CrossRefGoogle Scholar
  95. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236PubMedCrossRefGoogle Scholar
  96. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252PubMedCrossRefGoogle Scholar
  97. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162PubMedCrossRefGoogle Scholar
  98. Ruggeri C, Franzetti A, Bestetti G, Caredda P, La Colla P, Pintus M, Sergi S, Tamburini E (2009) Isolation and characterisation of surface active compound producing bacteria from hydrocarbon-contaminated environments. Int Biodeterior Biodegrad 63:936–942CrossRefGoogle Scholar
  99. Ryll R, Kumazawa Y, Yano I (2001) Immunological properties of trehalose dimycolate cord factor and other mycolic acid-containing glycolipids – a review. Microbiol Immunol 45:801–811PubMedCrossRefGoogle Scholar
  100. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sadouk Z, Hacene H, Tazerouti A (2008) Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil Gas Sci Technol 63:747–753CrossRefGoogle Scholar
  102. Sakaguchi I, Ikeda N, Nakayama N, Kato Y, Yano I, Kaneda K (2000) Trehalose 6,6-dimycolate cord factor neovascularization trough vascular endothelial growth factor production by neutrophiles and macrophages. Infect Immun 68:2043–2052PubMedPubMedCentralCrossRefGoogle Scholar
  103. Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A (2011) Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Colloids Surf B Biointerfaces 82:477–482PubMedCrossRefGoogle Scholar
  104. Singer MEV, Finnerty WR (1990) Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can J Microbiol 36:741–745PubMedCrossRefGoogle Scholar
  105. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121PubMedCrossRefGoogle Scholar
  106. Sokolovska I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027PubMedPubMedCentralCrossRefGoogle Scholar
  107. Stainsby FM, Philp JC, Dunbar S, Ivshina IB, Kuyukina MS (2005) Microbial foaming and bulking in activated sludge plants. In: Lehr JH, Keeley J, Lehr J, Kingery TB III (eds) Water encyclopedia: domestic, municipal, and industrial water supply and waste disposal. Wiley, Hoboken, NJ, pp 844–848Google Scholar
  108. Sung N, Takayama K, Collins MT (2004) Possible association of GroES and Antigen 85 proteins with heat resistance of Mycobacterium paratuberculosis. Appl Environ Microbiol 70:1688–1697PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sydor T, von Bargen K, Becken U, Spuerck S, Nicholson VM, Prescott JF, Haas A (2008) A mycolyl transferase mutant of Rhodococcus equi lacking capsule integrity is fully virulent. Vet Microbiol 128:327–341PubMedCrossRefGoogle Scholar
  110. Teruel JA, Ortiz A, Aranda FJ (2014) Interactions of a bacterial trehalose lipid with phosphatidylglycerol membranes at low ionic strength. Chem Phys Lipids 181:34–39PubMedCrossRefGoogle Scholar
  111. Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of succionyl trehalose lipid produced by Rhodococcus sp SD-74. J Oleo Sci 58:97–102PubMedCrossRefGoogle Scholar
  112. Tomiyasu I, Yoshinaga J, Kurano F, Kato Y, Kaneda K, Imaizumi S, Yano I (1986) Occurrence of a novel glycolipid, ‘trehalose 2,3,6′-trimycolate’ in a psychrophilic, acid-fast bacterium, Rhodococcus aurantiacus (Gordona aurantiaca). FEBS Lett 203:239–242CrossRefGoogle Scholar
  113. Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710PubMedCrossRefGoogle Scholar
  114. Tzvetkov M, Klopprogge C, Zelder O, Liebl W (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology (SGM) 149:1659–1673CrossRefGoogle Scholar
  115. Van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261PubMedPubMedCentralCrossRefGoogle Scholar
  116. Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620PubMedCrossRefGoogle Scholar
  117. White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744–755PubMedCrossRefGoogle Scholar
  118. Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Innis WE, Greer SW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968PubMedPubMedCentralGoogle Scholar
  119. Xia W-J, Dong H-P, Yu L, Yu D-F (2011) Comparative study of biosurfactant produced by microorganisms isolated from formation water of petroleum reservoir. Colloids Surf A Physicochem Eng Asp 392:124–130CrossRefGoogle Scholar
  120. Zaragoza A, Teruel JA, Aranda FJ, Ortiz A (2013) Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2. J Colloid Interface Sci 408:132–137PubMedCrossRefGoogle Scholar
  121. Zheng C, Yu L, Huang L, Xiu J, Huang Z (2012) Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J Petrol Sci Eng 81:49–56CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Ecology and Genetics of Microorganisms, Perm Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Perm State UniversityPermRussia

Personalised recommendations