Stellar Chromospheres: The Source of UV Emission

  • Jeffrey Linsky
Part of the Lecture Notes in Physics book series (LNP, volume 955)


The lower layer of a star’s atmosphere, its photosphere, has a thermal structure that decreases outward controlled by the balance of radiative and convection heat from below and the loss of radiation to space. With increasing height in a stellar atmosphere, magnetic heating processes become important in the energy balance, forcing the temperature to increase with height in a region called the chromosphere. Magnetic heating processes include the damping of different types of magnetic waves and the reconnection of magnetic fields.


  1. Abbett, W.P., Hawley, S.L.: Dynamic models of optical emission in impulsive solar flares. Astrophys. J. 521, 906 (1999)ADSCrossRefGoogle Scholar
  2. Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573 (2005)ADSCrossRefGoogle Scholar
  3. Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from M dwarf flares. Astrophys. J. 644, 484 (2006)ADSCrossRefGoogle Scholar
  4. Allred, J.C., Kowalski, A.F., Carlsson, M.: A unified computational model for solar and stellar flares. Astrophys. J. 809, 104 (2015)ADSCrossRefGoogle Scholar
  5. Anderson, L.S., Athay, R.G.: Model solar chromosphere with prescribed heating. Astrophys. J. 346, 1010 (1989)ADSCrossRefGoogle Scholar
  6. Andretta, V., Jones, H.P.: On the role of the solar corona and transition region in the excitation of the spectrum of neutral helium. Astrophys. J. 489, 375 (1997)ADSCrossRefGoogle Scholar
  7. Avrett, E.H., Hummer, D.G.: Non-coherent scattering, II: line formation with a frequency independent source function. Mon. Not. R. Astron. Soc. 130, 295 (1965)ADSCrossRefGoogle Scholar
  8. Ayres, T.R.: StarCAT: a catalog of space telescope imaging spectrograph ultraviolet echelle spectra of stars. Astrophys. J. Suppl. 187, 149 (2010)ADSCrossRefGoogle Scholar
  9. Bolduc, C., Charbonneau, P., Barnabé, R., Bourqui, M.S.: A reconstruction of ultraviolet spectral irradiance during the Maunder Minimum. Sol. Phys. 289, 2891 (2014)ADSCrossRefGoogle Scholar
  10. Brown, A., Jordan, C.: The chromosphere and corona of Procyon (α CMi, F5 IV-V). Mon. Not. R. Astron. Soc. 196, 757 (1981)ADSCrossRefGoogle Scholar
  11. Carlsson, M., Stein, R.F.: Dynamic hydrogen ionization. Astrophys. J. 572, 626 (2002)ADSCrossRefGoogle Scholar
  12. Cegla, H.M., Watson, C.A., Shelyag, S., Chaplin, W.J., Davies, G.R., Mathioudakis, M., Palumbo, M.L., III, Saar, S.H., Haywood, R.D.: Stellar surface magneto-convection as a source of astrophysical noise II. Center-to-limb parameterisation of absorption line profiles and comparison to observations. Astrophys. J. 866, 55 (2018)ADSCrossRefGoogle Scholar
  13. Centeno, R., Trujillo Bueno, J., Uitenbroek, H., Collados, M.: The Influence of coronal EUV irradiance on the emission in the He I 10830 Å and D3 Multiplets. Astrophys. J. 677, 742 (2008)ADSCrossRefGoogle Scholar
  14. Cuntz, M., Rammacher, W., Ulmschneider, P., Musielak, Z.E., Saar, S.H.: Two-Component theoretical chromosphere models for K Dwarfs of different magnetic activity: exploring the Ca II emission-stellar rotation relationship. Astrophys. J. 522, 1053 (1999)ADSCrossRefGoogle Scholar
  15. Doyle, J.G., Houdebine, E.R., Mathioudakis, M., Panagi, P.M.: Lower chromospheric activity in low activity M dwarfs. Astron. Astrophys. 285, 233 (1994)ADSGoogle Scholar
  16. Dupree, A.K., Lobel, A., Young, P.R., Ake, T.B., Linsky, J.L., Redfield, S.: The far-ultraviolet spectroscopic survey of luminous cool stars. Astrophys. J. 622, 629 (2005)ADSCrossRefGoogle Scholar
  17. Fontenla, J.M., Avrett, E.H., Loeser, R.: Energy balance in the solar transition region. I - hydrostatic thermal models with ambipolar diffusion. Astrophys. J. 355, 700 (1990)ADSCrossRefGoogle Scholar
  18. Fontenla, J.M., Avrett, E.H., Loeser, R.: Energy balance in the solar transition region. III - helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319 (1993)ADSCrossRefGoogle Scholar
  19. Fontenla, J.M., Curdt, W., Haberreiter, M., Harder, J., Tian, H.: Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-Ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J. 707, 482 (2009)ADSCrossRefGoogle Scholar
  20. Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T.: High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. 116, D20108 (2011)ADSCrossRefGoogle Scholar
  21. Fontenla, J.M., Landi, E., Snow, M., Woods, T.: Far- and extreme-UV solar spectral irradiance and radiance from simplified atmospheric physical models. Solar. Phys. 289, 515 (2014)ADSCrossRefGoogle Scholar
  22. Fontenla, J.M., Stancil, P.C., Landi, E.: Solar spectral irradiance, solar activity, and the near-ultraviolet. Astrophys. J. 809, 157 (2015)ADSCrossRefGoogle Scholar
  23. Fontenla, J., Linsky, J.L., Witbrod, J., France, K., Buccino, A., Mauas, P., Vieytes, M., Walkowicz,L.: Semi-empirical modeling of the photosphere, chromosphere, transition region, and corona of the M-dwarfs host star GJ 832. Astrophys. J. 830, 154 (2016)ADSCrossRefGoogle Scholar
  24. France, K., Froning, C.S., Linsky, J.L., Roberge, A., Stocke, J.T., Tian, F., Bushinsky, R., Désert, J.-M., Mauas, P., Vietes, M., Walkowicz, L.: The ultraviolet radiation environment around M dwarf exoplanet host stars. Astrophys. J. 763, 149 (2013)ADSCrossRefGoogle Scholar
  25. France, K., Loyd, R.O.P., Youngblood, A., Brown, A., Schneider, P.C., Hawley, S.L., Froning, C.S., Linsky, J.L., Roberge, A., et al.: The MUSCLES Treasury Survey I: motivation and overview. Astrophys. J. 820, 89 (2016)ADSCrossRefGoogle Scholar
  26. Fuhrmeister, B., Schmitt, J.H.M.M., Hauschildt, P.H.: PHOENIX model chromospheres of mid- to late-type M dwarfs. Astron. Astrophys. 439, 1137 (2005)ADSCrossRefGoogle Scholar
  27. Gabriel, A.H., Jordan, C.: Analysis of EUV observations of regions of the quiet and active corona at the time of the 1970 March 7 eclipse. Mon. Not. R. Astron. Soc. 173, 397 (1975)Google Scholar
  28. Galarza, J.Y., Meléndez, J., Cohen, J.G.: Serendipitous discovery of the faint solar twin Inti 1. Astron. Astrophys. 589, A65 (2016)ADSCrossRefGoogle Scholar
  29. Golding, T.P., Carlsson, M., Leenaarts, J.: Detailed and simplified nonequilibrium helium ionization in the solar atmosphere. Astrophys. J. 784, 30 (2014)ADSCrossRefGoogle Scholar
  30. Houdebine, E.R.: Observation and modelling of main-sequence star chromospheres - XII. Two-component model chromospheres for five active dM1e stars. Mon. Not. R. Astron. Soc. 397, 2133 (2009)ADSCrossRefGoogle Scholar
  31. Houdebine, E.R.: Observation and modelling of main-sequence star chromospheres. IX. Two-component model chromospheres for nine M1 dwarfs. Astron. Astrophys. 509, A65 (2010a)CrossRefGoogle Scholar
  32. Houdebine, E.R.: Observation and modelling of main-sequence star chromospheres - X. Radiative budgets on Gl 867A and AU Mic (dM1e), and a two-component model chromosphere for Gl 205 (dM1). Mon. Not. R. Astron. Soc. 403, 2157 (2010b)ADSCrossRefGoogle Scholar
  33. Houdebine, E.R., Doyle, J.G.: Observation and modelling of main sequence star chromospheres. 2: Modelling of the AU MIC (dM2.5e) hydrogen spectrum. Astron. Astrophys. 289, 185 (1994)Google Scholar
  34. Houdebine, E.R., Stempels, H.C.: Observation and modelling of main sequence stellar chromospheres. VI. Hα and Ca II line observations of M1 dwarfs and comparison with models. Astron. Astrophys. 326, 1143 (1997)Google Scholar
  35. Hummer, D.G.: Non-coherent scattering: I. The redistribution function with Doppler broadening. Mon. Not. R. Astron. Soc. 125, 21 (1962)ADSCrossRefGoogle Scholar
  36. Judge, P.G.: The chromosphere: gateway to the corona? …Or the purgatory of solar physics? Memorie della Societa Astronomica Italiana 81, 543 (2010)ADSGoogle Scholar
  37. Kowalski, A.,F., Hawley, S.L., Carlsson, M., Allred, J.C., Uitenbroek, H., Osten, R.A., Holman, G.: New insights into white-light flare emission from radiative-hydrodynamic modeling of a chromospheric condensation. Solar Phys. 290, 3487 (2015)ADSCrossRefGoogle Scholar
  38. Leenaarts, J. de la Cruz Rodríguez, J., Danilovic, S., Scharmer, G. Carlsson, M.: Chromospheric heating during flux emergence in the solar atmosphere. Astron. Astrophys. 612, 28 (2018)ADSCrossRefGoogle Scholar
  39. Linsky, J.L.: In: Ulmschneider, P., Priest, E.R., Rosner, R. (ed.) Mechanisms of Chromospheric and Coronal Heating, p. 166. Springer, Berlin (2001)Google Scholar
  40. Linsky, J.L.: Stellar model chromospheres and spectroscopic diagnostics. Ann. Rev. Astron. Astrophys. 55, 159 (2017)ADSCrossRefGoogle Scholar
  41. Linsky, J.L., Haisch, B.M.: Outer atmospheres of cool stars. I - the sharp division into solar-type and non-solar-type stars. Astrophys. J. Lett. 229, 27 (1979)ADSCrossRefGoogle Scholar
  42. Linsky, J.L., Wood, B.E., Judge, P., Brown, A., Andrulis, C., Ayres, T.R.: The transition regions of Capella. Astrophys. J. 442, 381 (1995)ADSCrossRefGoogle Scholar
  43. Linsky, J.L., Bushinsky, R., Ayres, T., France, K.: Ultraviolet spectroscopy of rapidly rotating solar-mass stars. Emission-line redshifts as a test of the solar-stellar connection. Astrophys. J. 754, 69 (2012a)ADSCrossRefGoogle Scholar
  44. Linsky, J.L., Bushinsky, R., Ayres, T., Fontenla, J., France, K.: Far-ultraviolet continuum emission: applying this diagnostic to the chromospheres of solar-mass stars. Astrophys. J. 745, 25 (2012b)ADSCrossRefGoogle Scholar
  45. Liseau, R., Vlemmings, W., Bayo, A., Bertone, E., Black, J.H., del Burgo, C., Chavez, M., Danchi, W., De la Luz, V., et al.: ALMA observations of α Centauri. First detection of main-sequence stars at 3 mm wavelength. Atron. Astrophys. 573, L4 (2015)Google Scholar
  46. Loukitcheva, M., Solanki, S.K., Carlsson, M., White, S.M.: Millimeter radiation from a 3D model of the solar atmosphere. I. Diagnosing chromospheric thermal structure. Astron. Astrophys. 575, A15 (2015)ADSCrossRefGoogle Scholar
  47. Loyd, R.O.P., France, K., Youngblood, A., Schneider, C., Brown, A., Hu, R., Linsky, J., Froning, C.S., Redfield, S., Rugheimer, S., Tian, F.: The MUSCLES Treasury Survey III: X-ray to infrared spectra of 11 M and K stars hosting planets. Astrophys. J. 824, 102 (2016)ADSCrossRefGoogle Scholar
  48. Maltby, P., Avrett, E.H., Carlsson, M., Kjeldseth-Moe, O., Kurucz, R.L., Loeser, R.: A new sunspot umbral model and its variation with the solar cycle. Astrophys. J. 306, 284 (1986)ADSCrossRefGoogle Scholar
  49. Meléndez, J., Ramírez, I.: HIP 56948: a solar twin with a low lithium abundance. Astrophys. J. 669, 89 (2007)ADSCrossRefGoogle Scholar
  50. Milkey, R.W., Mihalas, D.: Resonance-line transfer with partial redistribution: a preliminary study of Lyman α in the solar chromosphere. Astrophys. J. 185, 709 (1973a)ADSCrossRefGoogle Scholar
  51. Milkey, R.W., Mihalas, D.: Calculation of the solar chromospheric Lα profile allowing for partial redistribution effects. Solar Phys. 32, 361 (1973b)ADSCrossRefGoogle Scholar
  52. Milkey, R.W., Mihalas, D.: Resonance-line transfer with partial redistribution. II - the solar Mg II lines. Astrophys. J. 192, 769 (1974)ADSCrossRefGoogle Scholar
  53. Milkey, R.W., Ayres, T.R., Shine, R.A.: Resonance line transfer with partial redistribution. III Mg II resonance lines in solar-type stars. Astrophys. J. 197, 143 (1975)ADSCrossRefGoogle Scholar
  54. Mittag, M., Schröder, K.-P., Hempelmann, A., González-Pérez, J.N., Schmitt, J.H.M.M.: Chromospheric activity and evolutionary age of the Sun and four solar twins. Astron. Astrophys. 591, 89 (2016)CrossRefGoogle Scholar
  55. Osten, R.A., Hawley, S.L., Allred, J., Johns-Krull, C.M., Brown, A., Harper, G.M.: From radio to X-ray: the quiescent atmosphere of the dMe flare star EV Lacertae. Astrophys. J. 647, 1349 (2006)ADSCrossRefGoogle Scholar
  56. Pace, G., Pasquini, L.: The age-activity-rotation relationship in solar-type stars. Astron. Astrophys. 426, 1021 (2004)ADSCrossRefGoogle Scholar
  57. Pagano, I., Linsky, J.L., Carkner, L., Robinson, R.D., Woodgate, B., Timothy, G.: HST/STIS echelle spectra of the dM1e star AU Microscopii outside of flares. Astrophys. J. 532, 497 (2000)ADSCrossRefGoogle Scholar
  58. Pagano, I., Linsky, J.L., Valenti, J., Duncan, D.K.: HST/STIS high resolution echelle spectra of α Centauri A (G2 V). Astron. Astrophys. 415, 331 (2004)ADSCrossRefGoogle Scholar
  59. Peacock, S., Barman, T., Shkolnik, E.L., Hauschildt, P.H., Baron, E.: Predicting the extreme ultraviolet environment of exoplanets around low-mass stars: the TRAPPIST-1 system. Astrophys. J. 871, 235 (2019)ADSCrossRefGoogle Scholar
  60. Pevtsov, A.A., Bertello, L., Marble, A.R.: The Sun-as-a-star solar spectrum. AN 335, 21 (2014)ADSGoogle Scholar
  61. Porto de Mello, G.F., da Silva, L.: HR 6060: the closest ever solar twin? Astrophys. J. Lett. 482, L89 (1997)Google Scholar
  62. Rammacher, W., Ulmschneider, P.: Time-dependent ionization in dynamic solar and stellar atmospheres. I. Methods. Astrophys. J. 589, 988 (2003)ADSCrossRefGoogle Scholar
  63. Redfield, S., Linsky, J.L., Ake, T.B., Dupree, A.K., Robinson, R.D., Wood, B.E., Young, P.R.: A far-ultraviolet spectroscopic explorer survey of late-type dwarf stars. Astrophys. J. 581, 626 (2002)ADSCrossRefGoogle Scholar
  64. Ribas, I., Guinan, E.F., Güdel, M., Audard, M.: Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622, 680 (2005)ADSCrossRefGoogle Scholar
  65. Schmidt, S.J., Hawley, S.L., West, A.A., Bochanski, J.J., Davenport, J.R.A., Ge, J., Schneider, D.P.:BOSS ultracool dwarfs. I. Colors and magnetic activity of M and L dwarfs. Astron. J. 149, 158 (2015)ADSCrossRefGoogle Scholar
  66. Sim, S.A., Jordan, C.: On the filling factor of emitting material in the upper atmosphere of 𝜖 Eri (K2 V). Mon. Not. R. Astron. Soc. 346, 846 (2003)ADSCrossRefGoogle Scholar
  67. Sim, S.A., Jordan, C.: Modelling the chromosphere and transition region of 𝜖 Eri (K2 V). Mon. Not. R. Astron. Soc. 361, 1102 (2005)ADSCrossRefGoogle Scholar
  68. Smith, G.R.: Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation - II. Non-Maxwellian electron distributions. Mon. Not. R. Astron. Soc. 341, 143 (2003)ADSCrossRefGoogle Scholar
  69. Smith, G.R., Jordan, C.: Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation - I. Non-thermal transport of helium ions. Mon. Not. R. Astron. Soc. 337, 666 (2002)ADSCrossRefGoogle Scholar
  70. Soler, R., Terradas, J., Oliver, R., Ballester, J.L.: Propagation of torsional Alfvén Waves from the photosphere to the corona: reflection, transmission, and heating in expanding flux tubes. Astrophys. J. 840, 20 (2017)ADSCrossRefGoogle Scholar
  71. Takeda, Y. Takada-Hidai, M.: Chromospheres in metal-poor stars evidenced from the He I 10830Å line. Publ. Astron. Soc. Jpn. 63, 547 (2011)ADSCrossRefGoogle Scholar
  72. Thomas, R.N., Athay, R.G.: Physics of the Solar Chromosphere. Interscience Monographs and Texts in Physics and Astronomy. Interscience Publication, New York (1961)CrossRefGoogle Scholar
  73. Tremblin, P., Amundsen, D.S., Chabrier, G., Baraffe, I., Drummond, B., Hinkley, S., Mourier, P., Venot, O.: Cloudless atmospheres for L/T dwarfs and extrasolar giant planets. Astrophys. J. 817, 19 (2016)ADSCrossRefGoogle Scholar
  74. Ulmschneider, P.: In: Ulmschneider, P., Priest, E.R., Rosner, R. (ed.) Mechanisms of Chromospheric and Coronal Heating, p. 328. Springer, Berlin (2001)Google Scholar
  75. Vernazza, J.E., Avrett, E.H., Loeser, R.: Structure of the solar chromosphere. Basic computations and summary of the results. Astrophys. J. 184, 605 (1973)ADSCrossRefGoogle Scholar
  76. Vernazza, J.E., Avrett, E.H., Loeser, R.: Structure of the solar chromosphere. II - the underlying photosphere and temperature-minimum region. Astrophys. J. Suppl. 30, 1 (1976)ADSCrossRefGoogle Scholar
  77. Vernazza, J.E., Avrett, E.H., Loeser, R.: Structure of the solar chromosphere. III - models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. 45, 635 (1981)ADSCrossRefGoogle Scholar
  78. Vieytes, M., Mauas, P., Cincunegui, C.: Chromospheric models of solar analogues with different activity levels. Astron. Astrophys. 441, 701 (2005)ADSCrossRefGoogle Scholar
  79. Vieytes, M.C., Mauas, P.J.D. Díaz, R.F.: Chromospheric changes in K stars with activity. Mon. Not. R. Astron. Soc. 398, 1495 (2009)ADSCrossRefGoogle Scholar
  80. Walkowicz, L.M., Johns-Krull, C.M., Hawley, S.L.: Characterizing the near-UV environment of M dwarfs. Astrophys. J. 677, 593 (2008)ADSCrossRefGoogle Scholar
  81. Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., Holweger, H.: Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere. Astron. Astrophys. 414, 1121 (2004)ADSCrossRefGoogle Scholar
  82. Wedemeyer, S., Bastian, T., Brajsa, R., Hudson, H., Fleishman, G., Loukitcheva, M., Fleck, B., Kontar, E.P., De Pontieu, B., et al.: Solar science with the Atacama Large Millimeter/Submillimeter Array—a new view of our sun. Space Sci. Rev. 200, 1 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeffrey Linsky
    • 1
  1. 1.JILAUniversity of Colorado and NISTBoulderUSA

Personalised recommendations