Advertisement

Primary Sclerosing Cholangitis Overlapping with IBD

  • João Sabino
  • Joren tenHove
  • Joana Torres
Chapter

Abstract

Primary sclerosing cholangitis is a chronic and progressive cholestatic disease, characterized by inflammation and fibrosis of the intrahepatic and/or extrahepatic ducts, that may result in liver cirrhosis and eventually end-stage liver disease. No medical treatment is available, and liver transplantation remains the only curative option, albeit with an elevated recurrence rate. Having a diagnosis of inflammatory bowel disease is the strongest risk factor for PSC development, since 70% of patients with PSC have underlying IBD, most frequently ulcerative colitis. For unknown reasons, the coexistence of PSC with IBD seems to modify the IBD phenotype and disease course. PSC-IBD patients typically have extensive colonic involvement, albeit with mild inflammatory activity and symptoms, rectal sparing, backwash ileitis, and increased risk of developing pouchitis after proctocolectomy. Furthermore, some studies suggest that there may exist an inverse relationship between PSC disease severity and IBD activity. Importantly, patients with PSC-IBD present a very high risk of developing colorectal neoplasia, usually located in the right colon, requiring routine endoscopic surveillance (preferably using chromoendoscopy) every year, starting from the moment PSC is diagnosed.

No specific biomarker for diagnosing PSC exists. For prognostic purposes, the most commonly used important surrogate endpoints are alkaline phosphatase, bilirubin, transient elastography, and histology. No biomarker has proven to be accurate in diagnosing any of PSC’s complications such as cholangiocarcinoma or colorectal neoplasia, and therefore surveillance is paramount. The management of the IBD follows the same approach as for patients with IBD alone. Close articulation with a specialized hepatologist is warranted when considering treatment options for PSC and for correct follow-up of the patient.

Notes

Acknowledgments

We would like to thanks Afonso Gonçalves, MD, for providing the magnetic resonance cholangiopancreatography images. We would like to thanks Joana Nunes, MD, for proofreading the manuscript and providing suggestions.

References

  1. 1.
    Mendes F, Lindor KD. Primary sclerosing cholangitis: overview and update. Nat Rev Gastroenterol Hepatol. 2010;7(11):611–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Rossi RE, Conte D, Massironi S. Primary sclerosing cholangitis associated with inflammatory bowel disease: an update. Eur J Gastroenterol Hepatol. 2016;28(2):123–31.PubMedGoogle Scholar
  3. 3.
    Boonstra K, Weersma RK, van Erpecum KJ, et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology. 2013;58(6):2045–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Claessen MM, Vleggaar FP, Tytgat KM, Siersema PD, van Buuren HR. High lifetime risk of cancer in primary sclerosing cholangitis. J Hepatol. 2009;50(1):158–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Bergquist A, Ekbom A, Olsson R, et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol. 2002;36(3):321–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Younossi ZM, Kiwi ML, Boparai N, Price LL, Guyatt G. Cholestatic liver diseases and health-related quality of life. Am J Gastroenterol. 2000;95(2):497–502.PubMedCrossRefGoogle Scholar
  7. 7.
    Boberg KM, Aadland E, Jahnsen J, Raknerud N, Stiris M, Bell H. Incidence and prevalence of primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis in a Norwegian population. Scand J Gastroenterol. 1998;33(1):99–103.PubMedCrossRefGoogle Scholar
  8. 8.
    Molodecky NA, Kareemi H, Parab R, et al. Incidence of primary sclerosing cholangitis: a systematic review and meta-analysis. Hepatology. 2011;53(5):1590–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Weismuller TJ, Trivedi PJ, Bergquist A, et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology. 2017;152(8):1975–84 e8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Palmela C, Peerani F, Castaneda D, Torres J, Itzkowitz SH. Inflammatory bowel disease and primary sclerosing cholangitis: a review of the phenotype and associated specific features. Gut Liver. 2018;12(1):17–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Loftus EV Jr, Harewood GC, Loftus CG, et al. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut. 2005;54(1):91–6.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bergquist A, Montgomery SM, Bahmanyar S, et al. Increased risk of primary sclerosing cholangitis and ulcerative colitis in first-degree relatives of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2008;6(8):939–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Ji SG, Juran BD, Mucha S, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet. 2017;49(2):269–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Jiang X, Karlsen TH. Genetics of primary sclerosing cholangitis and pathophysiological implications. Nat Rev Gastroenterol Hepatol. 2017;14(5):279–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Sabino J, Vieira-Silva S, Machiels K, et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut. 2016;65(10):1681–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Torres J, Bao X, Goel A, et al. The features of mucosa-associated microbiota in primary sclerosing cholangitis. Aliment Pharmacol Ther. 2016;43(7):790–801.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kummen M, Holm K, Anmarkrud JA, et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut. 2017;66(4):611–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Katt J, Schwinge D, Schoknecht T, et al. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology. 2013;58(3):1084–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Olsson R, Bjornsson E, Backman L, et al. Bile duct bacterial isolates in primary sclerosing cholangitis: a study of explanted livers. J Hepatol. 1998;28(3):426–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Farkkila M, Karvonen AL, Nurmi H, et al. Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: a randomized placebo-controlled trial. Hepatology. 2004;40(6):1379–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Tabibian JH, O'Hara SP, Trussoni CE, et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology. 2016;63(1):185–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Schrumpf E, Kummen M, Valestrand L, et al. The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation. J Hepatol. 2017;66(2):382–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Salmi M, Jalkanen S. Lymphocyte homing to the gut: attraction, adhesion, and commitment. Immunol Rev. 2005;206:100–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Eksteen B, Grant AJ, Miles A, et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med. 2004;200(11):1511–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Henriksen EK, Jorgensen KK, Kaveh F, et al. Gut and liver T-cells of common clonal origin in primary sclerosing cholangitis-inflammatory bowel disease. J Hepatol. 2017;66(1):116–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Andersen IM, Tengesdal G, Lie BA, Boberg KM, Karlsen TH, Hov JR. Effects of coffee consumption, smoking, and hormones on risk for primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2014;12(6):1019–28.PubMedCrossRefGoogle Scholar
  27. 27.
    Mitchell SA, Thyssen M, Orchard TR, Jewell DP, Fleming KA, Chapman RW. Cigarette smoking, appendectomy, and tonsillectomy as risk factors for the development of primary sclerosing cholangitis: a case control study. Gut. 2002;51(4):567–73.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Eaton JE, Juran BD, Atkinson EJ, et al. A comprehensive assessment of environmental exposures among 1000 North American patients with primary sclerosing cholangitis, with and without inflammatory bowel disease. Aliment Pharmacol Ther. 2015;41(10):980–90.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sano H, Nakazawa T, Ando T, et al. Clinical characteristics of inflammatory bowel disease associated with primary sclerosing cholangitis. J Hepatobiliary Pancreat Sci. 2011;18(2):154–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Boonstra K, van Erpecum KJ, van Nieuwkerk KM, et al. Primary sclerosing cholangitis is associated with a distinct phenotype of inflammatory bowel disease. Inflamm Bowel Dis. 2012;18(12):2270–6.PubMedCrossRefGoogle Scholar
  31. 31.
    de Vries AB, Janse M, Blokzijl H, Weersma RK. Distinctive inflammatory bowel disease phenotype in primary sclerosing cholangitis. World J Gastroenterol. 2015;21(6):1956–71.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Halliday JS, Djordjevic J, Lust M, et al. A unique clinical phenotype of primary sclerosing cholangitis associated with Crohn’s disease. J Crohns Colitis. 2012;6(2):174–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Schaeffer DF, Win LL, Hafezi-Bakhtiari S, Cino M, Hirschfield GM, El-Zimaity H. The phenotypic expression of inflammatory bowel disease in patients with primary sclerosing cholangitis differs in the distribution of colitis. Dig Dis Sci. 2013;58(9):2608–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Jorgensen KK, Grzyb K, Lundin KE, et al. Inflammatory bowel disease in patients with primary sclerosing cholangitis: clinical characterization in liver transplanted and nontransplanted patients. Inflamm Bowel Dis. 2012;18(3):536–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Krugliak Cleveland N, Rubin DT, Hart J, et al. Patients with ulcerative colitis and primary sclerosing cholangitis frequently have subclinical inflammation in the proximal colon. Clin Gastroenterol Hepatol. 2018;16(1):68–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Joo M, Abreu-e-Lima P, Farraye F, et al. Pathologic features of ulcerative colitis in patients with primary sclerosing cholangitis: a case-control study. Am J Surg Pathol. 2009;33(6):854–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Marelli L, Xirouchakis E, Kalambokis G, Cholongitas E, Hamilton MI, Burroughs AK. Does the severity of primary sclerosing cholangitis influence the clinical course of associated ulcerative colitis? Gut. 2011;60(9):1224–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Lunder AK, Hov JR, Borthne A, et al. Prevalence of sclerosing cholangitis detected by magnetic resonance cholangiography in patients with long-term inflammatory bowel disease. Gastroenterology. 2016;151(4):660–9 e4.PubMedCrossRefGoogle Scholar
  39. 39.
    Moncrief KJ, Savu A, Ma MM, Bain VG, Wong WW, Tandon P. The natural history of inflammatory bowel disease and primary sclerosing cholangitis after liver transplantation–a single-centre experience. Can J Gastroenterol. 2010;24(1):40–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Verdonk RC, Dijkstra G, Haagsma EB, et al. Inflammatory bowel disease after liver transplantation: risk factors for recurrence and de novo disease. Am J Transplant. 2006;6(6):1422–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Gelley F, Miheller P, Peter A, Telkes G, Nemes B. Activity of ulcerative colitis before and after liver transplantation in primary sclerosing cholangitis: the Hungarian experience. Transplant Proc. 2012;44(7):2164–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Singh S, Talwalkar JA. Primary sclerosing cholangitis: diagnosis, prognosis, and management. Clin Gastroenterol Hepatol. 2013;11(8):898–907.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Rabinovitz M, Gavaler JS, Schade RR, Dindzans VJ, Chien M, Van Thiel DH. Does primary sclerosing cholangitis occurring in association with inflammatory bowel disease differ from that occurring in the absence of inflammatory bowel disease? A study of sixty-six subjects. Hepatology. 1990;11:7–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Navaneethan U, Venkatesh PG, Lashner BA, Shen B, Kiran RP. The impact of ulcerative colitis on the long-term outcome of patients with primary sclerosing cholangitis. Aliment Pharmacol Ther. 2012;35(9):1045–53.PubMedGoogle Scholar
  45. 45.
    Yanai H, Matalon S, Rosenblatt A, et al. Prognosis of primary sclerosing cholangitis in Israel is independent of coexisting inflammatory bowel disease. J Crohns Colitis. 2015;9(2):177–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Rasmussen HH, Fallingborg JF, Mortensen PB, Vyberg M, Tage-Jensen U, Rasmussen SN. Hepatobiliary dysfunction and primary sclerosing cholangitis in patients with Crohn's disease. Scand J Gastroenterol. 2009;32(6):604–10.CrossRefGoogle Scholar
  47. 47.
    Broome U, Olsson R, Loof L, et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut. 1996;38:610.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ludwig J, Barham SS, LaRusso NF, Elveback LR, Wiesner RH, McCall JT. Morphologic features of chronic hepatitis associated with primary sclerosing cholangitis and chronic ulcerative colitis. Hepatology. 1981;1:632–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Ngu JH, Gearry RB, Wright AJ, Stedman CA. Inflammatory bowel disease is associated with poor outcomes of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2011;9(12):1092–7; quiz e135.PubMedCrossRefGoogle Scholar
  50. 50.
    Fevery J, Van Steenbergen W, Van Pelt J, et al. Patients with large-duct primary sclerosing cholangitis and Crohn's disease have a better outcome than those with ulcerative colitis, or without IBD. Aliment Pharmacol Ther. 2016;43(5):612–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Nordenvall C, Olen O, Nilsson PJ, et al. Colectomy prior to diagnosis of primary sclerosing cholangitis is associated with improved prognosis in a nationwide cohort study of 2594 PSC-IBD patients. Aliment Pharmacol Ther. 2018;47(2):238–45.CrossRefGoogle Scholar
  52. 52.
    Singh S, Loftus EV Jr, Talwalkar JA. Inflammatory bowel disease after liver transplantation for primary sclerosing cholangitis. Am J Gastroenterol. 2013;108(9):1417–25.PubMedCrossRefGoogle Scholar
  53. 53.
    Cholongitas E, Shusang V, Papatheodoridis GV, et al. Risk factors for recurrence of primary sclerosing cholangitis after liver transplantation. Liver Transpl. 2008;14(2):138–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Vera A, Moledina S, Gunson B, et al. Risk factors for recurrence of primary sclerosing cholangitis of liver allograft. Lancet. 2002;360(9349):1943–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Gautam M, Cheruvattath R, Balan V. Recurrence of autoimmune liver disease after liver transplantation: a systematic review. Liver Transpl. 2006;12(12):1813–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Rojas-Feria M, Castro M, Suarez E, Ampuero J, Romero-Gomez M. Hepatobiliary manifestations in inflammatory bowel disease: the gut, the drugs and the liver. World J Gastroenterol. 2013;19(42):7327–40.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Aabakken L, Karlsen TH, Albert J, et al. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy. 2017;49(6):588–608.PubMedCrossRefGoogle Scholar
  58. 58.
    Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis – a comprehensive review. J Hepatol. 2017;67:1298.PubMedCrossRefGoogle Scholar
  59. 59.
    European Association for the Study of the L. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51(2):237–67.CrossRefGoogle Scholar
  60. 60.
    Rizvi S, Eaton JE, Gores GJ. Primary sclerosing cholangitis as a premalignant biliary tract disease: surveillance and management. Clin Gastroenterol Hepatol. 2015;13(12):2152–65.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Gulamhusein AF, Eaton JE, Tabibian JH, Atkinson EJ, Juran BD, Lazaridis KN. Duration of inflammatory bowel disease is associated with increased risk of cholangiocarcinoma in patients with primary sclerosing cholangitis and IBD. Am J Gastroenterol. 2016;111(5):705–11.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383(9935):2168–79.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ehlken H, Zenouzi R, Schramm C. Risk of cholangiocarcinoma in patients with primary sclerosing cholangitis: diagnosis and surveillance. Curr Opin Gastroenterol. 2017;33(2):78–84.PubMedGoogle Scholar
  64. 64.
    Torres J, de Chambrun GP, Itzkowitz S, Sachar DB, Colombel J-F. Review article: colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease. Aliment Pharmacol Ther. 2011;34:497–508.PubMedCrossRefGoogle Scholar
  65. 65.
    Soetikno RM, Lin OS, Heidenreich PA, Young HS, Blackstone MO. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis: a meta-analysis. Gastrointest Endosc. 2002;56(1):48–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Navaneethan U, Venkatesh PG, Lashner BA, Remzi FH, Shen B, Kiran RP. Temporal trends in colon neoplasms in patients with primary sclerosing cholangitis and ulcerative colitis. J Crohns Colitis. 2012;6(8):845–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Zheng HH, Jiang XL. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a meta-analysis of 16 observational studies. Eur J Gastroenterol Hepatol. 2016;28(4):383–90.PubMedGoogle Scholar
  68. 68.
    Torres J, Pineton de Chambrun G, Itzkowitz S, Sachar DB, Colombel JF. Review article: colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease. Aliment Pharmacol Ther. 2011;34(5):497–508.PubMedCrossRefGoogle Scholar
  69. 69.
    Magro F, Gionchetti P, Eliakim R, et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J Crohns Colitis. 2017;11(6):649–70.CrossRefGoogle Scholar
  70. 70.
    Kornbluth A, Sachar DB, Practice Parameters Committee of the American College of G. Ulcerative colitis practice guidelines in adults: American College Of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol. 2010;105(3):501–23; quiz 524.PubMedCrossRefGoogle Scholar
  71. 71.
    Venkatesh PGK, Jegadeesan R, Gutierrez NG, Sanaka MR, Navaneethan U. Natural history of low grade dysplasia in patients with primary sclerosing cholangitis and ulcerative colitis. J Crohns Colitis. 2013;7(12):968–73.PubMedCrossRefGoogle Scholar
  72. 72.
    Fumery M, Dulai PS, Gupta S, et al. Incidence, risk factors, and outcomes of colorectal cancer in patients with ulcerative colitis with low-grade dysplasia: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(5):665–74 e5.PubMedCrossRefGoogle Scholar
  73. 73.
    Shah SC, ten Hove JR, Casteneda D, et al. High risk of advanced colorectal neoplasia in patients with primary sclerosing cholangitis associated with inflammatory bowel disease: results from a multicenter longitudinal surveillance cohort. Clin Gastroenterol Hepatol. 2018;16:1106.PubMedCrossRefGoogle Scholar
  74. 74.
    Moussata D, Allez M, Cazals-Hatem D, et al. Are random biopsies still useful for the detection of neoplasia in patients with IBD undergoing surveillance colonoscopy with chromoendoscopy?Gut. 2018;67(4):616–24.Google Scholar
  75. 75.
    van den Broek FJ, Stokkers PC, Reitsma JB, et al. Random biopsies taken during colonoscopic surveillance of patients with longstanding ulcerative colitis: low yield and absence of clinical consequences. Am J Gastroenterol. 2014;109(5):715–22.PubMedCrossRefGoogle Scholar
  76. 76.
    Navaneethan U, Kochhar G, Venkatesh PG, et al. Random biopsies during surveillance colonoscopy increase dysplasia detection in patients with primary sclerosing cholangitis and ulcerative colitis. J Crohns Colitis. 2013;7(12):974–81.PubMedCrossRefGoogle Scholar
  77. 77.
    Ponsioen CY, Chapman RW, Chazouilleres O, et al. Surrogate endpoints for clinical trials in primary sclerosing cholangitis: review and results from an International PSC Study Group consensus process. Hepatology. 2016;63(4):1357–67.PubMedCrossRefGoogle Scholar
  78. 78.
    Ponsioen CY, Vrouenraets SM, Prawirodirdjo W, et al. Natural history of primary sclerosing cholangitis and prognostic value of cholangiography in a Dutch population. Gut. 2002;51(4):562–6.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kim WR, Therneau TM, Wiesner RH, et al. A revised natural history model for primary sclerosing cholangitis. Mayo Clin Proc. 2000;75(7):688–94.PubMedCrossRefGoogle Scholar
  80. 80.
    Stanich PP, Björnsson E, Gossard AA, Enders F, Jorgensen R, Lindor KD. Alkaline phosphatase normalization is associated with better prognosis in primary sclerosing cholangitis. Dig Liver Dis. 2011;43:309–13.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Al Mamari S, Djordjevic J, Halliday JS, Chapman RW. Improvement of serum alkaline phosphatase to <1.5 upper limit of normal predicts better outcome and reduced risk of cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol. 2013;58:329–34.PubMedCrossRefGoogle Scholar
  82. 82.
    de Vries EMG, Wang J, Leeflang MMG, et al. Alkaline phosphatase at diagnosis of primary sclerosing cholangitis and 1 year later: evaluation of prognostic value. Liver Int. 2016;36:1867–75.PubMedCrossRefGoogle Scholar
  83. 83.
    Broomé U, Olsson R, Lööf L, et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut. 1996;38:610–5.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Boberg KM, Rocca G, Egeland T, et al. Time-dependent Cox regression model is superior in prediction of prognosis in primary sclerosing cholangitis. Hepatology (Baltimore, Md.). 2002;35:652–7.CrossRefGoogle Scholar
  85. 85.
    Kamath PS, Kim WR, Group ALDS. The model for end-stage liver disease (MELD). Hepatology. 2007;45:797–805.PubMedCrossRefGoogle Scholar
  86. 86.
    Tischendorf JJW, Hecker H, Krüger M, Manns MP, Meier PN. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: a single center study. Am J Gastroenterol. 2007;102:107–14.PubMedCrossRefGoogle Scholar
  87. 87.
    Charatcharoenwitthaya P, Enders FB, Halling KC, Lindor KD. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology (Baltimore, Md.). 2008;48:1106–17.CrossRefGoogle Scholar
  88. 88.
    Levy C, Lymp J, Angulo P, Gores GJ, Larusso N, Lindor KD. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci. 2005;50:1734–40.PubMedCrossRefGoogle Scholar
  89. 89.
    Olaizola P, Lee-Law PY, Arbelaiz A, et al. MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4 Pt B):1293–307.CrossRefGoogle Scholar
  90. 90.
    Bernuzzi F, Marabita F, Lleo A, et al. Serum microRNAs as novel biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Clin Exp Immunol. 2016;185:61–71.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Vesterhus M, Holm A, Hov JR, et al. Novel serum and bile protein markers predict primary sclerosing cholangitis disease severity and prognosis. J Hepatol. 2017;66:1214–22.PubMedCrossRefGoogle Scholar
  92. 92.
    Jendrek ST, Gotthardt D, Nitzsche T, et al. Anti-GP2 IgA autoantibodies are associated with poor survival and cholangiocarcinoma in primary sclerosing cholangitis. Gut. 2017;66:137–44.PubMedCrossRefGoogle Scholar
  93. 93.
    Trivedi PJ, Tickle J, Vesterhus MN, et al. Vascular adhesion protein-1 is elevated in primary sclerosing cholangitis, is predictive of clinical outcome and facilitates recruitment of gut-tropic lymphocytes to liver in a substrate-dependent manner. Gut. 2017.  https://doi.org/10.1136/gutjnl-2016-312354.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hov JR, Boberg KM, Taraldsrud E, et al. Antineutrophil antibodies define clinical and genetic subgroups in primary sclerosing cholangitis. Liver Int. 2017;37(3):458–65.PubMedCrossRefGoogle Scholar
  95. 95.
    Andresen K, Boberg KM, Vedeld HM, et al. Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma. Hepatology. 2015;61:1651–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Arbelaiz A, Azkargorta M, Krawczyk M, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2017;66(4):1125–43.PubMedCrossRefGoogle Scholar
  97. 97.
    Lankisch TO, Metzger J, Negm AA, et al. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis. Hepatology (Baltimore, Md.). 2011;53:875–84.CrossRefGoogle Scholar
  98. 98.
    Navaneethan U, Parsi MA, Lourdusamy V, et al. Volatile organic compounds in bile for early diagnosis of cholangiocarcinoma in patients with primary sclerosing cholangitis: a pilot study. Gastrointest Endosc. 2015;81:943–9.e1.PubMedCrossRefGoogle Scholar
  99. 99.
    Kisiel JB, Yab TC, Nazer Hussain FT, et al. Stool DNA testing for the detection of colorectal neoplasia in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2013;37(5):546–54.PubMedCrossRefGoogle Scholar
  100. 100.
    Munie S, Hyman N, Osler T. Fate of the rectal stump after subtotal colectomy for ulcerative colitis in the era of ileal pouch-anal anastomosis. JAMA Surg. 2013;148(5):408–11.PubMedCrossRefGoogle Scholar
  101. 101.
    Sinakos E, Samuel S, Enders F, Loftus EV Jr, Sandborn WJ, Lindor KD. Inflammatory bowel disease in primary sclerosing cholangitis: a robust yet changing relationship. Inflamm Bowel Dis. 2013;19(5):1004–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Mathis KL, Benavente-Chenhalls LA, Dozois EJ, Wolff BG, Larson DW. Short- and long-term surgical outcomes in patients undergoing proctocolectomy with ileal pouch-anal anastomosis in the setting of primary sclerosing cholangitis. Dis Colon Rectum. 2011;54(7):787–92.PubMedCrossRefGoogle Scholar
  103. 103.
    Poropat G, Giljaca V, Stimac D, Gluud C. Bile acids for primary sclerosing cholangitis. In: Poropat G, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2011. p. CD003626.Google Scholar
  104. 104.
    Martinez JD, Stratagoules ED, LaRue JM, et al. Different bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr Cancer. 1998;31:111–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Singh S, Khanna S, Pardi DS, Loftus EV, Talwalkar JA. Effect of ursodeoxycholic acid use on the risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2013;19(8):1631–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Eaton JE, Silveira MG, Pardi DS, et al. High-dose ursodeoxycholic acid is associated with the development of colorectal neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Am J Gastroenterol. 2011;106(9):1638–45.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lindor KD, Kowdley KV, Harrison ME, American College of G. ACG clinical guideline: primary sclerosing cholangitis. Am J Gastroenterol. 2015;110(5):646–59; quiz 660.PubMedCrossRefGoogle Scholar
  108. 108.
    Eksteen B. The gut-liver axis in primary sclerosing cholangitis. Clin Liver Dis. 2016;20(1):1–14.PubMedCrossRefGoogle Scholar
  109. 109.
    Tabibian JH, Weeding E, Jorgensen RA, et al. Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis – a pilot study. Aliment Pharmacol Ther. 2013;37(6):604–12.PubMedCrossRefGoogle Scholar
  110. 110.
    Alabraba E, Nightingale P, Gunson B, et al. A re-evaluation of the risk factors for the recurrence of primary sclerosing cholangitis in liver allografts. Liver Transplant. 2009;15:330–40.CrossRefGoogle Scholar
  111. 111.
    Gelley F, Miheller P, Péter A, Telkes G, Nemes B. Activity of ulcerative colitis before and after liver transplantation in primary sclerosing cholangitis: the Hungarian experience. Transplant Proc. 2012;44:2164–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Schnitzler F, Friedrich M, Stallhofer J, et al. Solid organ transplantation in patients with inflammatory bowel diseases (IBD): analysis of transplantation outcome and IBD activity in a large single center cohort. PLoS One. 2015;10:e0135807.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Vera A, Gunson BK, Ussatoff V, et al. Colorectal cancer in patients with inflammatory bowel disease after liver transplantation for primary sclerosing cholangitis. Transplantation. 2003;75:1983–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Loftus EV, Aguilar HI, Sandborn WJ, et al. Risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis following orthotopic liver transplantation. Hepatology (Baltimore, Md.). 1998;27:685–90.CrossRefGoogle Scholar
  115. 115.
    Dvorchik I, Subotin M, Demetris AJ, et al. Effect of liver transplantation on inflammatory bowel disease in patients with primary sclerosing cholangitis. Hepatology (Baltimore, Md.). 2002;35:380–4.CrossRefGoogle Scholar
  116. 116.
    Hanouneh IA, Macaron C, Lopez R, Zein NN, Lashner BA. Risk of colonic neoplasia after liver transplantation for primary sclerosing cholangitis. Inflamm Bowel Dis. 2012;18:269–74.PubMedCrossRefGoogle Scholar
  117. 117.
    Eaton JE, Smyrk TC, Imam M, et al. The fate of indefinite and low-grade dysplasia in ulcerative colitis and primary sclerosing cholangitis colitis before and after liver transplantation. Aliment Pharmacol Ther. 2013;38:977–87.PubMedCrossRefGoogle Scholar
  118. 118.
    Lundqvist K, Broome U. Differences in colonic disease activity in patients with ulcerative colitis with and without primary sclerosing cholangitis: a case control study. Dis Colon Rectum. 1997;40(4):451–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Sokol H, Cosnes J, Chazouilleres O, et al. Disease activity and cancer risk in inflammatory bowel disease associated with primary sclerosing cholangitis. World J Gastroenterol. 2008;14(22):3497–503.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rahman M, Desmond P, Mortensen N, Chapman R. The clinical impact of primary sclerosing cholangitis in patients with an ileal pouch–anal anastomosis for ulcerative colitis. Int J Colorectal Dis. 2011;26(5):553–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • João Sabino
    • 1
  • Joren tenHove
    • 2
  • Joana Torres
    • 3
  1. 1.Department of Gastroenterology and HepatologyUniversity Hospitals of LeuvenLeuvenBelgium
  2. 2.Department of Gastroenterology and HepatologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  3. 3.Gastroenterology DepartmentHospital Beatriz ÂngeloLouresPortugal

Personalised recommendations