Braess Paradox in Networks of Stochastic Microscopic Traffic Models

  • Stefan BittihnEmail author
  • Andreas Schadschneider
Conference paper


The Braess Paradox describes a counterintuitive situation that can arise in traffic networks which are used by selfish drivers who want to minimize their own traveltimes. For specific combinations of demand and traveltime functions of the roads in such networks the addition of a new road, resulting in a per se faster origin–destination connection, can lead to higher traveltimes for all network users. As an important addition to previous research on the paradox which focused on deterministic macroscopic models of traffic in road networks, we study its occurrence employing a stochastic microscopic traffic model—the totally asymmetric exclusion process (TASEP). We find that the paradox also occurs in these more realistic traffic models and that, depending on the degree of stochasticity, it dominates large parts of the phase space.



Financial support by the Deutsche Forschungsgesellschaft (DFG) under grant SCHA 636/8-2 and the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS) is gratefully acknowledged. Monte Carlo simulations were carried out on the CHEOPS (Cologne High Efficiency Operating Platform for Science) cluster of the RRZK (University of Cologne).


  1. 1.
    Bittihn, S., Schadschneider, A.: Braess paradox in a network of totally asymmetric exclusion processes. Phys. Rev. E 94, 062312 (2016)CrossRefGoogle Scholar
  2. 2.
    Bittihn, S., Schadschneider, A.: Braess paradox in a network with stochastic dynamics and fixed strategies. Physica A Stat. Mech. Appl. 507, 133–152 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blythe, R., Evans, M.: Nonequilibrium steady states of matrix product form: a solver’s guide. J. Phys. A 40, R333 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258 (1968)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Transp. Sci. 39, 446 (2005). (English translation of Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung12, 258 (1968)) CrossRefGoogle Scholar
  6. 6.
    Crociani, L., Lämmel, G.: Multidestination pedestrian flows in equilibrium: a cellular automaton-based approach. Comput. Aided Civ. Inf. Eng. 31(6), 432–448 (2016)CrossRefGoogle Scholar
  7. 7.
    Derrida, B., Evans, M., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kolata, G.: What if they closed 42d Street and nobody noticed? The New York Times (December 1990)Google Scholar
  9. 9.
    MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)CrossRefGoogle Scholar
  10. 10.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I Fr. 2(12), 2221–2229 (1992)CrossRefGoogle Scholar
  11. 11.
    Nagurney, A.: The negation of the Braess paradox as demand increases: the wisdom of crowds in transportation networks. EPL 91, 48002 (2010)CrossRefGoogle Scholar
  12. 12.
    Pas, E., Principio, S.L.: Braess’ paradox: some new insights. Transp. Res. Part B Methodol. 31(3), 265–276 (1997)CrossRefGoogle Scholar
  13. 13.
    Penchina, C.M., Penchina, L.J.: The Braess paradox in mechanical, traffic, and other networks. Am. J. Phys. 71(5), 479 (2003)CrossRefGoogle Scholar
  14. 14.
    Schütz, G., Domany, E.: Phase transitions in an exactly solvable one-dimensional exclusion process. J. Stat. Phys. 72, 277 (1993)CrossRefGoogle Scholar
  15. 15.
    Steinberg, R., Zangwill, W.: The prevalence of Braess’ paradox. Transp. Sci. 17, 301 (1983)CrossRefGoogle Scholar
  16. 16.
    Thunig, T., Nagel, K.: Braess’s Paradox in an agent-based transport model. Proc. Comput. Sci. 83, 946–951 (2016)CrossRefGoogle Scholar
  17. 17.
    Wardrop, J.G.: Road paper. Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1(3), 325–362 (1952)Google Scholar
  18. 18.
    Witthaut, D., Timme, M.: Braess’s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 14(8), 083036 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of CologneKölnGermany

Personalised recommendations