Advertisement

How Long Does It Take to Board an Airplane?

  • Jevgenijs Kaupužs
  • Reinhard MahnkeEmail author
  • Eitan Bachmat
  • Vidar Frette
Conference paper

Abstract

A simple airplane-boarding model, introduced earlier by Frette and Hemmer, is considered. In this model, N passengers have reserved seats, but enter the airplane in arbitrary order. We are looking for an analytical expression, which describes the mean boarding time depending on the total number of passengers N. For this purpose, we first determine precise values of the exponents and expansion coefficients in the asymptotic expression at N →. It is reached by mathematical calculations and fitting the Monte Carlo simulation data for very large N, up to N ∼ 6 ⋅ 108. Finally, we compare the obtained analytical approximation to the simulation data for a realistic number of passengers \(N \lesssim 500\) and find a good agreement.

Notes

Acknowledgements

The airplane-boarding problem has been discussed by E. Bachmat, S. Erland, V. Frette, J. Kaupužs, and S. Neumann during a meeting at Technical College of Haugesund in August 2016. This work has been completed at Rostock University in October 2017. The authors acknowledge the use of resources provided by the Latvian Grid Infrastructure and High Performance Computing center of Riga Technical University.

References

  1. 1.
    Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Am. Math. Soc. 36, 413 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bachmat, E., Berend, D., Sapir, L., Skiena, S., Stolyarov, N.: Analysis of airplane boarding via space-time geometry and random matrix theory. J. Phys. A 39, L453–L459 (2006)CrossRefGoogle Scholar
  3. 3.
    Bachmat, E., Berend, D., Sapir, L., Skiena, S., Stolyarov, N.: Analysis of airplane boarding times. Oper. Res. 57, 499 (2009)CrossRefGoogle Scholar
  4. 4.
    Bachmat, E., Khachaturov, V., Kuperman, R.: Optimal back-to-front airplane boarding. Phys. Rev. E 87, 062805 (2013)CrossRefGoogle Scholar
  5. 5.
    Baek, Y., Ha, M., Jeong, H.: Impact of sequential disorder on the scaling behavior of airplane boarding time. Phys. Rev. E 87, 052803 (2013)CrossRefGoogle Scholar
  6. 6.
    Bernstein, N.: Comment on ‘Time needed to board an airplane: a power law and the structure behind it’. Phys. Rev. E 86, 023101 (2012)CrossRefGoogle Scholar
  7. 7.
    Brics, M., Kaupužs, J., Mahnke, R.: Scaling behavior of an airplane-boarding-model. Phys. Rev. E 86, 042117 (2013)CrossRefGoogle Scholar
  8. 8.
    Frette, V., Hemmer, P.C.: Time needed to board an airplane: a power law and the structure behind it. Phys. Rev. E 85, 011130 (2012)CrossRefGoogle Scholar
  9. 9.
    Jaehn, F., Neumann, S.: Airplane boarding. Eur. J. Oper. Res. 244, 339 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kaupužs, J., Mahnke, R., Weber, H.: Boarding of finite-size passengers to an airplane. In: Knoop, V.L., Daamen, W. (eds) Traffic and Granular Flow ’15, pp. 597–604, Springer, Cham (2016)Google Scholar
  11. 11.
    Mahnke, R., Kaupužs, J., Brics, M.: Air traffic, boarding and scaling exponents. In: Chraibi, M. Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow ’13, pp. 305–314, Springer, Cham (2015)Google Scholar
  12. 12.
    Vershik, A.M., Kerov, C.V.: Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tables. Dokl. Acad. Nauk SSSR 233, 1024 (1977) [Sov. Math. Dokl. 18, 527 (1977)]Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jevgenijs Kaupužs
    • 1
    • 2
  • Reinhard Mahnke
    • 3
    Email author
  • Eitan Bachmat
    • 4
  • Vidar Frette
    • 5
  1. 1.Faculty of Materials Science and Applied ChemistryInstitute of Technical Physics, Riga Technical UniversityRigaLatvia
  2. 2.Institute of Mathematical Sciences and Information TechnologiesUniversity of LiepajaLiepajaLatvia
  3. 3.Institute of PhysicsRostock UniversityRostockGermany
  4. 4.Department of Computer ScienceBen-Gurion UniversityBeer-ShevaIsrael
  5. 5.Department of EngineeringStord/Haugesund CollegeHaugesundNorway

Personalised recommendations