Investigating Passengers’ Seating Behavior in Suburban Trains

  • Jakob Schöttl
  • Michael J. Seitz
  • Gerta KösterEmail author
Conference paper


In pedestrian dynamics, individual-based models serve to simulate the behavior of crowds so that evacuation times and crowd densities can be estimated or the efficiency of public transportation optimized. Often train systems are investigated where seat choice may have a great impact on capacity utilization. Thus it is necessary to reproduce passengers’ behavior inside trains. Yet there is surprisingly little research on the subject. In this contribution, we collect data on seating behavior in Munich’s suburban trains, analyze it, and subsequently introduce a model that matches what we observe. For example, within a compartment, passengers tend to choose the seat group with the smallest number of other passengers. Within a seat group, passengers prefer window seats and forward-facing seats. When there is already another person, passengers tend to choose the seat diagonally across from that person. These and other aspects are incorporated in our model. We demonstrate the applicability of our model and present a qualitative validation with a simulation example. The model’s implementation is part of the free and open-source VADERE simulation framework for pedestrian dynamics and thus available for cross-validation. The model can be used as one component in larger systems for the simulation of public transport.


  1. 1.
    Alizadeh, R.: A dynamic cellular automaton model for evacuation process with obstacles. Saf. Sci. 49(2), 315–323 (2011). CrossRefGoogle Scholar
  2. 2.
    Cis, P.: Auslastungsgrad von Eisenbahnwagen in Abhängigkeit von individuellem Fahrgastverhalten. Diplomarbeit, Technische Universität Wien (2009). Google Scholar
  3. 3.
    Daamen, W., Duives, D.C., Hoogendoorn, S.P. (eds.): The Conference in Pedestrian and Evacuation Dynamics 2014 (PED 2014). In: Transportation Research Procedia, vol. 2, pp. 1–818. Elsevier, Delft (2014).
  4. 4.
    Dietrich, F., Köster, G.: Gradient navigation model for pedestrian dynamics. Phys. Rev. E 89(6), 062801 (2014).
  5. 5.
    Ezaki, T., Ohtsuka, K., Chraibi, M., Boltes, M., Yanagisawa, D., Seyfried, A., Schadschneider, A., Nishinari, K.: Inflow process of pedestrians to a confined space (2016). Preprint. arXiv:1609.07884Google Scholar
  6. 6.
    Gao, Z., Qu, Y., Li, X., Long, J., Huang, H.J.: Simulating the dynamic escape process in large public places. Oper. Res. 62(6), 1344–1357 (2014). MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hall, E.T.: The Hidden Dimension. Doubleday, New York (1966)Google Scholar
  8. 8.
    Jaehn, F., Neumann, S.: Airplane boarding. Eur. J. Oper. Res. 244(2), 339–359 (2015). MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A Stat. Mech. Appl. 312(1), 260–276 (2002)CrossRefGoogle Scholar
  10. 10.
    Köster, G., Zönnchen, B.: Queuing at bottlenecks using a dynamic floor field for navigation. In: The Conference in Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, pp. 344–352. Delft (2014).
  11. 11.
    Köster, G., Lehmberg, D., Dietrich, F.: Is slowing down enough to model movement on stairs? In: Knoop, V.L., Daamen, W. (eds.) Traffic and Granular Flow ’15, 27–30 October 2015, pp. 35–42. Springer, Nootdorp (2016)Google Scholar
  12. 12.
    Liu, X., Song, W., Fu, L., Fang, Z.: Experimental study of pedestrian inflow in a room with a separate entrance and exit. Phys. A Stat. Mech. Appl. 442, 224–238 (2016). CrossRefGoogle Scholar
  13. 13.
    Liu, X., Song, W., Fu, L., Lv, W., Fang, Z.: Typical features of pedestrian spatial distribution in the inflow process. Phys. Lett. A 380(17), 1526–1534 (2016). CrossRefGoogle Scholar
  14. 14.
    Panzera, N.: Die Haltezeit bei hochrangigen, innerstädtischen Verkehren–Einflussfaktoren und Optimierungspotenziale. Diplomarbeit, Fachhochschule St. Pölten GmbH (2014)Google Scholar
  15. 15.
    Pelechano, N., Badler, N.I.: Modeling crowd and trained leader behavior during building evacuation. Departmental Papers (CIS), p. 272 (2006)Google Scholar
  16. 16.
    Plank, V.: Dimensionierung von Gepäckablagen in Reisezügen. Diplomarbeit, Technische Universität Wien (2008). Google Scholar
  17. 17.
    Qiang, S.J., Jia, B., Xie, D.F., Gao, Z.Y.: Reducing airplane boarding time by accounting for passengers’ individual properties: a simulation based on cellular automaton. J. Air Transp. Manag. 40, 42–47 (2014). CrossRefGoogle Scholar
  18. 18.
    Rüger, B., Loibl, C.: Präferenzen bei der sitzplatzwahl in fernreisezügen. Eisenbahntechnische Rundschau (ETR) 59(11), 774–777 (2010). Google Scholar
  19. 19.
    Rüger, B., Ostermann, N.: Der Innenraum von Reisezugwagen–Gratwanderung zwischen sinn und effizienz. Eisenbahntechnische Rundschau (ETR) (3), 38–44 (2015). Google Scholar
  20. 20.
    Schöttl, J.: Modelling passengers’ seating behavior for simulations of pedestrian dynamics. Master’s Thesis, Munich University of Applied Sciences (2016)Google Scholar
  21. 21.
    Seitz, M.J.: Simulating pedestrian dynamics: Towards natural locomotion and psychological decision making. Ph.D. Thesis, Technische Universität München, Munich (2016).
  22. 22.
    Seitz, M.J., Bode, N.W.F., Köster, G.: How cognitive heuristics can explain social interactions in spatial movement. J. R. Soc. Interface 13(121), 20160439 (2016). CrossRefGoogle Scholar
  23. 23.
    Seitz, M.J., Seer, S., Klettner, S., Köster, G., Handel, O.: How do we wait? Fundamentals, characteristics, and modeling implications. In: Knoop, V.L. Daamen, W. (eds.) Traffic and Granular Flow ’15, 27–30 October 2015, pp. 217–224. Springer, Nootdorp (2016). CrossRefGoogle Scholar
  24. 24.
    von Sivers, I., Köster, G.: Dynamic stride length adaptation according to utility and personal space. Transp. Res. B Methodol. 74, 104–117 (2015). CrossRefGoogle Scholar
  25. 25.
    Steiner, A., Phillipp, M.: Speeding up the airplane boarding process by using pre-boarding areas. In: Swiss Transport Research Conference. Ascona (2009)Google Scholar
  26. 26.
    Trinkoff, A.M.: Seating patterns on the Washington, DC Metro Rail System. Am. J. Public Health 75(6), 657–658 (1985). CrossRefGoogle Scholar
  27. 27.
    Tuna, D.: Fahrgastwechselzeit im Personenfernverkehr. Master’s Thesis, Technische Universität Wien (2008). Google Scholar
  28. 28.
    VADERE-Team: VADERE simulation framework (2016).
  29. 29.
    Wardman, M., Murphy, P.: Passengers’ valuations of train seating layout, position and occupancy. Transp. Res. A Policy Pract. 74, 222–238 (2015). CrossRefGoogle Scholar
  30. 30.
    Xiao, Y., Gao, Z., Qu, Y., Li, X.: A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach. Transp. Res. C Emerg. Technol. 68, 566–580 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jakob Schöttl
    • 1
  • Michael J. Seitz
    • 1
  • Gerta Köster
    • 1
    Email author
  1. 1.Munich University of Applied SciencesMunichGermany

Personalised recommendations