Advertisement

Noise-Induced Stop-and-Go Dynamics

  • Antoine TordeuxEmail author
  • Andreas Schadschneider
  • Sylvain Lassarre
Conference paper

Abstract

Stop-and-go waves are commonly observed in traffic and pedestrian flows. In traffic theory, they are described by phase transitions of metastable models. The self-organisation phenomenon occurs due to inertia mechanisms but requires fine tuning of the parameters. Here, a novel explanation for stop-and-go waves based on stochastic effects is presented for pedestrian dynamics. We show that the introduction of specific coloured noises in a stable microscopic model allows to describe realistic pedestrian stop-and-go behaviour without requirement of metastability and phase transition. We compare simulation results of the stochastic model to real pedestrian trajectories and discuss plausible values for the model’s parameters.

Notes

Acknowledgements

The authors thank Prof. Michel Roussignol for his help in the formulation of the model. Financial support by the German Science Foundation under grant SCHA 636/9-1 is gratefully acknowledged.

References

  1. 1.
    Arnold, L., Horsthemke, W., Lefever, R.: White and coloured external noise and transition phenomena in nonlinear systems. Z. Phys. B Condens. Matter 29(4), 367–373 (1978)Google Scholar
  2. 2.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995)CrossRefGoogle Scholar
  3. 3.
    Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Czirok, A., Vicsek, T.: Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46–49 (1994)CrossRefGoogle Scholar
  4. 4.
    Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R., Simpson, S.J.: From disorder to order in marching locusts. Science 312(5778), 1402–1406 (2006)CrossRefGoogle Scholar
  5. 5.
    Bussemaker, H., Deutsch, A., Geigant, E.: Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys. Rev. Lett. 78, 5018–5021 (1997)CrossRefGoogle Scholar
  6. 6.
    Castro, F., Sánchez, A.D., Wio, H.S.: Reentrance phenomena in noise induced transitions. Phys. Rev. Lett. 75, 1691–1694 (1995)CrossRefGoogle Scholar
  7. 7.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4–6), 199–329 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Colombo, R.: Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63(2), 708–721 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gilden, D., Thornton, T., Mallon, M.: 1∕f noise in human cognition. Science 267(5205), 1837–1839 (1995)CrossRefGoogle Scholar
  10. 10.
    Hamdar, S., Mahmassani, H., Treiber, M.: From behavioral psychology to acceleration modeling: calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment. Transp. Res. B Methodol. 78, 32–53 (2015)CrossRefGoogle Scholar
  11. 11.
    Hänggi, P., Jung, P.: Colored Noise in Dynamical Systems, pp. 239–326. Wiley, New York (2007)Google Scholar
  12. 12.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)CrossRefGoogle Scholar
  13. 13.
    Helbing, D., Treiber, M.: Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Phys. Rev. Lett. 81, 3042–3045 (1998)CrossRefGoogle Scholar
  14. 14.
    Helbing, D., Farkas, I., Vicsek, T.: Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84(6), 1240–1243 (2000)CrossRefGoogle Scholar
  15. 15.
    Herman, R., Montroll, E., Potts, R., Rothery, R.: Traffic dynamics: analysis of stability in car following. Oper. Res. 7(1), 86–106 (1959)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hermann, G., Touboul, J.: Heterogeneous connections induce oscillations in large-scale networks. Phys. Rev. Lett. 109, 018702 (2012)CrossRefGoogle Scholar
  17. 17.
    Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001)CrossRefGoogle Scholar
  18. 18.
    Kerner, B.: The Physics of Traffic. Springer, Berlin (2004)CrossRefGoogle Scholar
  19. 19.
    Kerner, B.S., Rehborn, H.: Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 79, 4030–4033 (1997)CrossRefGoogle Scholar
  20. 20.
    Kuang, H., Fan, Y., Li, X., Kong, L.: Asymmetric effect and stop-and-go waves on single-file pedestrian dynamics. Procedia Eng. 31, 1060–1065 (2012)CrossRefGoogle Scholar
  21. 21.
    Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré, J.: Realistic following behaviors for crowd simulation. Comput. Graph. Forum 31(2pt2), 489–498 (2012)CrossRefGoogle Scholar
  22. 22.
    Lindgren, G., Rootzen, H., Sandsten, M.: Stationary Stochastic Processes for Scientists and Engineers. Taylor & Francis, Boca Raton (2013)CrossRefGoogle Scholar
  23. 23.
    Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Nat. Acad. Sci. 108(17), 6884–6888 (2011)CrossRefGoogle Scholar
  24. 24.
    Muramatsu, M., Nagatani, T.: Soliton and kink jams in traffic flow with open boundaries. Phys. Rev. E 60, 180–187 (1999)CrossRefGoogle Scholar
  25. 25.
    Orosz, G., Wilson, R.E., Szalai, R., Stépán, G.: Exciting traffic jams: nonlinear phenomena behind traffic jam formation on highways. Phys. Rev. E 80(4), 046205 (2009)CrossRefGoogle Scholar
  26. 26.
    Portz, A., Seyfried, A.: Modeling stop-and-go waves in pedestrian dynamics. In: International Conference on Parallel Processing and Applied Mathematics, pp. 561–568 (2010)CrossRefGoogle Scholar
  27. 27.
    Seyfried, A., Portz, A., Schadschneider, A.: Phase coexistence in congested states of pedestrian dynamics. Lecture Notes in Computer Science, vol. 6350, pp. 496–505 (2010)CrossRefGoogle Scholar
  28. 28.
    Sugiyama, Y., Fukui, M., Kikushi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S.: Traffic jams without bottlenecks. Experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 033001 (2008)Google Scholar
  29. 29.
    Takayasu, M., Takayasu, H.: 1/f noise in a traffic model. Fractals 01(04), 860–866 (1993)CrossRefGoogle Scholar
  30. 30.
    Tomer, E., Safonov, L., Havlin, S.: Presence of many stable nonhomogeneous states in an inertial car-following model. Phys. Rev. Lett. 84, 382–385 (2000)CrossRefGoogle Scholar
  31. 31.
    Tordeux, A., Schadschneider, A.: White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J. Phys. A 49(18), 185101 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tordeux, A., Seyfried, A.: Collision-free nonuniform dynamics within continuous optimal velocity models. Phys. Rev. E 90, 042812 (2014)CrossRefGoogle Scholar
  33. 33.
    Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies and anticipation in microscopic traffic models. Physica A 360(1), 71–88 (2006)CrossRefGoogle Scholar
  34. 34.
    Treiber, M., Kesting, A., Helbing, D.: Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts. Transp. Res. B Methodol. 44(8–9), 983–1000 (2010)CrossRefGoogle Scholar
  35. 35.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wagner, P.: How human drivers control their vehicle. Eur. Phys. J. B Condens. Matter 52(3), 427–431 (2006)Google Scholar
  37. 37.
    Williams, R., Herrup, K.: The control of neuron number. Annu. Rev. Neurosci. 11(1), 423–453 (1988)CrossRefGoogle Scholar
  38. 38.
    Zgonnikov, A., Lubashevsky, I., Kanemoto, S., Miyazawa, T., Suzuki, T.: To react or not to react? Intrinsic stochasticity of human control in virtual stick balancing. J. R. Soc. Interface 11(99), 20140636 (2014)Google Scholar
  39. 39.
    Zhang, J., Mehner, W., Holl, S., Boltes, M., Andresen, E., Schadschneider, A., Seyfried, A.: Universal flow-density relation of single-file bicycle, pedestrian and car motion. Phys. Lett. A 378(44), 3274–3277 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antoine Tordeux
    • 1
    • 2
    Email author
  • Andreas Schadschneider
    • 3
  • Sylvain Lassarre
    • 4
  1. 1.Forschungszentrum JülichJülichGermany
  2. 2.University of WuppertalWuppertalGermany
  3. 3.University of CologneCologneGermany
  4. 4.IFSTTAR COSYS GRETTIAMarne la Vallée Cedex 2France

Personalised recommendations