Advertisement

Prediction of Pedestrian Speed with Artificial Neural Networks

  • Antoine TordeuxEmail author
  • Mohcine Chraibi
  • Armin Seyfried
  • Andreas Schadschneider
Conference paper

Abstract

Pedestrian behaviours tend to depend on the type of facility. Accurate predictions of pedestrian movement in complex geometries (including corridor, bottleneck or intersection) are difficult to achieve for models with few parameters. Artificial neural networks have multiple parameters and are able to identify various types of patterns. They could be a suitable alternative for forecasts. We aim in this paper to present first steps testing this approach. We compare estimations of pedestrian speed with a classical model and a neural network for combinations of corridor and bottleneck experiments. The results show that the neural network is able to differentiate the two geometries and to improve the estimation of pedestrian speeds.

Notes

Acknowledgements

Financial supports by the German Science Foundation (DFG) under grants SCHA 636/9-1 and SE 1789/4-1 are gratefully acknowledged.

References

  1. 1.
    Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: IEEE ICCV Conference, pp. 961–971 (2016)Google Scholar
  2. 2.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995)CrossRefGoogle Scholar
  3. 3.
    Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4), 046111 (2010)CrossRefGoogle Scholar
  4. 4.
    Chraibi, M., Ezaki, T., Tordeux, A., Nishinari, K., Schadschneider, A., Seyfried, A.: Jamming transitions in force-based models for pedestrian dynamics. Phys. Rev. E 92, 042809 (2015)CrossRefGoogle Scholar
  5. 5.
    Daamen, W.: Modelling passenger flows in public transport facilities. Dissertation, TU Delft (2004)Google Scholar
  6. 6.
    Das, P., Parida, M., Katiyar, V.K.: Analysis of interrelationship between pedestrian flow parameters using artificial neural network. J. Mod. Transport. 23(4), 298–309 (2015)CrossRefGoogle Scholar
  7. 7.
    Forschungszentrum Jülich: Dataset of experiments with pedestrians. http://ped.fz-juelich.de/database
  8. 8.
    Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: IEEE ICCV Conference, pp. 4346–4354 (2015)Google Scholar
  9. 9.
    Fritsch, S., Guenther, F., Suling, M.: neuralnet: training of neural networks. http://CRAN.R-project.org/package=neuralnet (2012)
  10. 10.
    Guo, R., Wong, S., Huang, H., Zhang, P., Lam, W.: A microscopic pedestrian-simulation model and its application to intersecting flows. Physica A 389(3), 515–526 (2010)CrossRefGoogle Scholar
  11. 11.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)CrossRefGoogle Scholar
  12. 12.
    Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transport. Sci. 39(1), 1–24 (2005)CrossRefGoogle Scholar
  13. 13.
    Jackel, L., Hackett, D., Krotkov, E., Perschbacher, M., Pippine, J., Sullivan, C.: How DARPA structures its robotics programs to improve locomotion and navigation. Commun. ACM 50(11), 55–59 (2007)CrossRefGoogle Scholar
  14. 14.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI’95 Conference, pp. 1137–1143. Morgan Kaufmann, San Francisco (1995)Google Scholar
  15. 15.
    Lv, W., Song, W.G., Ma, J., Fang, Z.M.: A two-dimensional optimal velocity model for unidirectional pedestrian flow based on pedestrian’s visual hindrance field. IEEE Trans. Intell. Transp. Syst. 14(4), 1753–1763 (2013)CrossRefGoogle Scholar
  16. 16.
    Ma, Y., Lee, E.W.M., Yuen, R.K.K.: An artificial intelligence-based approach for simulating pedestrian movement. IEEE Trans. Intell. Transp. Syst. 17(11), 3159–3170 (2016)CrossRefGoogle Scholar
  17. 17.
    Mooney, C., Duval, R.: Bootstrapping: A Nonparametric Approach to Statistical Inference. 94–95. Sage Publications, Thousand Oaks (1993)Google Scholar
  18. 18.
    Moussaïd, M., Guillot, E., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., Pettré, J., Appert-Rolland, C., Degond, P., Theraulaz, G.: Traffic instabilities in self-organized pedestrian crowds. PLOS Comput. Biol. 8(3), 1–10 (2012)CrossRefGoogle Scholar
  19. 19.
    Nakayama, A., Hasebe, K., Sugiyama, Y.: Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model. Phys. Rev. E 71, 036121 (2005)CrossRefGoogle Scholar
  20. 20.
    Parisi, D., Patterson, G.: Influence of bottleneck lengths and position on simulated pedestrian egress. Pap. Phys. 9, 090001 (2017)CrossRefGoogle Scholar
  21. 21.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2014). http://www.R-project.org/
  22. 22.
    Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)CrossRefGoogle Scholar
  23. 23.
    Sadati, N., Taheri, J.: Solving robot motion planning problem using Hopfield neural network in a fuzzified environment. In: IEEE FS Conference, vol. 2, pp. 1144–1149 (2002)Google Scholar
  24. 24.
    Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Encyclopedia of Complexity and Systems Science, pp. 3142–3176. Springer, New York (2009)CrossRefGoogle Scholar
  25. 25.
    Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. J. Stat. Mech. Theory Exp. 2005(10), P10002 (2005)CrossRefGoogle Scholar
  26. 26.
    Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transport. Sci. 43(3), 395–406 (2009)CrossRefGoogle Scholar
  27. 27.
    Tordeux, A., Chraibi, M., Seyfried, A., Schadschneider, A.: Data from: Prediction of pedestrian speed with artificial neural networks (2017).  https://doi.org/10.5281/zenodo.1054017
  28. 28.
    Treiber, M., Kesting, A.: Traffic Flow Dynamics. Springer, Berlin (2013)CrossRefGoogle Scholar
  29. 29.
    Weidmann, U.: Transporttechnik der Fußgänger. Technical Report, Schriftenreihe des IVT Nr. 90 (ETH Zürich) (1994)Google Scholar
  30. 30.
    Zhang, J., Seyfried, A.: Experimental studies of pedestrian flows under different boundary conditions. In: ITSC IEEE Conference, pp. 542–547 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antoine Tordeux
    • 1
    • 2
    Email author
  • Mohcine Chraibi
    • 1
  • Armin Seyfried
    • 1
    • 2
  • Andreas Schadschneider
    • 3
  1. 1.Forschungszentrum JülichJülichGermany
  2. 2.University of WuppertalWuppertalGermany
  3. 3.University of CologneCologneGermany

Personalised recommendations