Automated Quality Assessment of Space-Continuous Models for Pedestrian Dynamics

  • Valentina Kurtc
  • Mohcine Chraibi
  • Antoine Tordeux
Conference paper


In this work we propose a methodology for assessment of pedestrian models continuous in space. With respect to the Kolmogorov–Smirnov distance between two data-clouds, representing, for instance, simulated and the corresponding empirical data, we calculate an evaluation factor between zero and one. Based on the value of the herein developed factor, we make a statement about the goodness of the model under evaluation. Moreover this process can be repeated in an automatic way in order to maximize the above-mentioned factor and hence determine the optimal set of model parameters.


  1. 1.
    Asja, J., Appert-Rolland, C., Lemercier, S., Pettré, J.: Properties of pedestrians walking in line: fundamental diagrams. Phys. Rev. E 85(85), 9 (2012).
  2. 2.
    Boltes, M., Zhang, J., Seyfried, A., Steffen, B.: T-junction: experiments, trajectory collection, and analysis. In: IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds, vol. 13. International Conference on Computer Vision (ICCV) (2011)Google Scholar
  3. 3.
    Burghardt, S.: Dynamik von personenströmen in sportstadien. Dissertation, Bergische Universität Wuppertal (2013)Google Scholar
  4. 4.
    Burghardt, S., Seyfried, A., Klingsch, W.: Improving egress design through measurement and correct interpretation of the fundamental diagram for stairs. In: Panda, M., Chattaraj, U. (eds.) Developments in Road Transportation, pp. 181–187. Macmillan Publishers India Ltd, Noida (2010)Google Scholar
  5. 5.
    Burghardt, S., Seyfried, A., Klingsch, W.: Fundamental diagram of stairs: Critical review and topographical measurements. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 329–344. Springer International Publishing, Cham (2014) CrossRefGoogle Scholar
  6. 6.
    Campanella, M., Hoogendoorn, S., Daamen, W.: Quantitative and Qualitative Validation Procedure for General Use of Pedestrian Models, pp. 891–905. Springer International Publishing, Cham (2014). Google Scholar
  7. 7.
    Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst. 12(3), 393–405 (2009). CrossRefGoogle Scholar
  8. 8.
    Holl, S., Seyfried, A.: Laboratory experiments on crowd dynamics. inSiDE 11(2), 102–103 (2013)Google Scholar
  9. 9.
    Hoogendoorn, S.P., Daamen, W.: Pedestrian behavior at bottlenecks. Transport. Sci. 39(2), 147–159 (2005). CrossRefGoogle Scholar
  10. 10.
    Kemloh, U., Chraibi, M., Zhang, J.: Jupedsim: Jülich pedestrian simulator.
  11. 11.
    Kemloh Wagoum, A.U., Chraibi, M., Zhang, J.: Jupedsim: an open framework for simulating and analyzing the dynamics of pedestrians. In: 3rd Conference of Transportation Research Group of India (2015)Google Scholar
  12. 12.
    Kretz, T., Grünebohm, A., Kaufman, M., Mazur, F., Schreckenberg, M.: Experimental study of pedestrian counterflow in a corridor. J. Stat. Mech. 10, P10001 (2006). CrossRefGoogle Scholar
  13. 13.
    Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech Theory Exp. 10, 10014 (2006). CrossRefGoogle Scholar
  14. 14.
    Liu, X., Song, W., Zhang, J.: Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing. Physica A 388(13), 2717–2726 (2009). CrossRefGoogle Scholar
  15. 15.
    Moussaid, M., Garnier, S., Theraulaz, G., Helbing, D.: Collective information processing and pattern formation in swarms, flocks and crowds. Top. Cogn. Sci. 1(3), 469–497 (2009)CrossRefGoogle Scholar
  16. 16.
    MSC.1-Circ.1238: Guidelines for evacuation analysis for new and existing passenger ships. Technical report, International Maritime Organization, Marine Safety Committee, London, June 6, 2008. MSC/Circ. 1033Google Scholar
  17. 17.
    Rimea-richtlinie für mikroskopische entfluchtungs-analysen (2007).
  18. 18.
    Ronchi, E., KuKuligowski, E.D., Reneck, P.A., Peacock, R.D., Nilsson, D.: The process of verification and validation of building fire evacuation models. Technical Report, National Institute of Standards and Technology (2013)Google Scholar
  19. 19.
    Sargent, R.G.: Verification and validation of simulation models. J. Simul. 7(1), 12–24 (2013). MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 5, pp. 3142–3176. Springer, Berlin (2009)CrossRefGoogle Scholar
  21. 21.
    Seer, S., Rudloff, C., Matyus, T., Brändle, N.: Validating social force based models with comprehensive real world motion data. Transp. Res. Procedia 2(0), 724–732 (2014). The Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22–24 October 2014, Delft, The NetherlandsCrossRefGoogle Scholar
  22. 22.
    Tordeux, A., Schadschneider, A.: White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J. Phys. A Math. Theor. (2016). MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tordeux, A., Chraibi, M., Seyfried, A.: Collision-Free Speed Model for Pedestrian Dynamics, pp. 225–232. Springer International Publishing, Cham (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentina Kurtc
    • 1
  • Mohcine Chraibi
    • 2
  • Antoine Tordeux
    • 3
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Forschungszentrum JülichJülichGermany
  3. 3.University of WuppertalWuppertalGermany

Personalised recommendations