Advertisement

Automated Quality Assessment of Space-Continuous Models for Pedestrian Dynamics

  • Valentina Kurtc
  • Mohcine Chraibi
  • Antoine Tordeux
Conference paper

Abstract

In this work we propose a methodology for assessment of pedestrian models continuous in space. With respect to the Kolmogorov–Smirnov distance between two data-clouds, representing, for instance, simulated and the corresponding empirical data, we calculate an evaluation factor between zero and one. Based on the value of the herein developed factor, we make a statement about the goodness of the model under evaluation. Moreover this process can be repeated in an automatic way in order to maximize the above-mentioned factor and hence determine the optimal set of model parameters.

References

  1. 1.
    Asja, J., Appert-Rolland, C., Lemercier, S., Pettré, J.: Properties of pedestrians walking in line: fundamental diagrams. Phys. Rev. E 85(85), 9 (2012).  https://doi.org/10.1103/PhysRevE.85.036111. http://pre.aps.org/abstract/PRE/v85/i3/e036111
  2. 2.
    Boltes, M., Zhang, J., Seyfried, A., Steffen, B.: T-junction: experiments, trajectory collection, and analysis. In: IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds, vol. 13. International Conference on Computer Vision (ICCV) (2011)Google Scholar
  3. 3.
    Burghardt, S.: Dynamik von personenströmen in sportstadien. Dissertation, Bergische Universität Wuppertal (2013)Google Scholar
  4. 4.
    Burghardt, S., Seyfried, A., Klingsch, W.: Improving egress design through measurement and correct interpretation of the fundamental diagram for stairs. In: Panda, M., Chattaraj, U. (eds.) Developments in Road Transportation, pp. 181–187. Macmillan Publishers India Ltd, Noida (2010)Google Scholar
  5. 5.
    Burghardt, S., Seyfried, A., Klingsch, W.: Fundamental diagram of stairs: Critical review and topographical measurements. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 329–344. Springer International Publishing, Cham (2014) https://doi.org/10.1007/978-3-319-02447-9_27 CrossRefGoogle Scholar
  6. 6.
    Campanella, M., Hoogendoorn, S., Daamen, W.: Quantitative and Qualitative Validation Procedure for General Use of Pedestrian Models, pp. 891–905. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-02447-9_74 Google Scholar
  7. 7.
    Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst. 12(3), 393–405 (2009). https://doi.org/10.1142/S0219525909002209 CrossRefGoogle Scholar
  8. 8.
    Holl, S., Seyfried, A.: Laboratory experiments on crowd dynamics. inSiDE 11(2), 102–103 (2013)Google Scholar
  9. 9.
    Hoogendoorn, S.P., Daamen, W.: Pedestrian behavior at bottlenecks. Transport. Sci. 39(2), 147–159 (2005).  https://doi.org/10.1287/trsc.1040.0102 CrossRefGoogle Scholar
  10. 10.
    Kemloh, U., Chraibi, M., Zhang, J.: Jupedsim: Jülich pedestrian simulator.  https://doi.org/10.5281/zenodo.592209. http://jupedsim.org
  11. 11.
    Kemloh Wagoum, A.U., Chraibi, M., Zhang, J.: Jupedsim: an open framework for simulating and analyzing the dynamics of pedestrians. In: 3rd Conference of Transportation Research Group of India (2015)Google Scholar
  12. 12.
    Kretz, T., Grünebohm, A., Kaufman, M., Mazur, F., Schreckenberg, M.: Experimental study of pedestrian counterflow in a corridor. J. Stat. Mech. 10, P10001 (2006). https://doi.org/10.1088/1742-5468/2006/10/P10001 CrossRefGoogle Scholar
  13. 13.
    Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech Theory Exp. 10, 10014 (2006). https://doi.org/10.1088/1742-5468/2006/10/P10014 CrossRefGoogle Scholar
  14. 14.
    Liu, X., Song, W., Zhang, J.: Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing. Physica A 388(13), 2717–2726 (2009). https://doi.org/10.1016/j.physa.2009.03.017 CrossRefGoogle Scholar
  15. 15.
    Moussaid, M., Garnier, S., Theraulaz, G., Helbing, D.: Collective information processing and pattern formation in swarms, flocks and crowds. Top. Cogn. Sci. 1(3), 469–497 (2009)CrossRefGoogle Scholar
  16. 16.
    MSC.1-Circ.1238: Guidelines for evacuation analysis for new and existing passenger ships. Technical report, International Maritime Organization, Marine Safety Committee, London, June 6, 2008. MSC/Circ. 1033Google Scholar
  17. 17.
    Rimea-richtlinie für mikroskopische entfluchtungs-analysen (2007). www.rimea.de
  18. 18.
    Ronchi, E., KuKuligowski, E.D., Reneck, P.A., Peacock, R.D., Nilsson, D.: The process of verification and validation of building fire evacuation models. Technical Report, National Institute of Standards and Technology (2013)Google Scholar
  19. 19.
    Sargent, R.G.: Verification and validation of simulation models. J. Simul. 7(1), 12–24 (2013).  https://doi.org/10.1057/jos.2012.20 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 5, pp. 3142–3176. Springer, Berlin (2009)CrossRefGoogle Scholar
  21. 21.
    Seer, S., Rudloff, C., Matyus, T., Brändle, N.: Validating social force based models with comprehensive real world motion data. Transp. Res. Procedia 2(0), 724–732 (2014). https://doi.org/10.1016/j.trpro.2014.09.080. http://www.sciencedirect.com/science/article/pii/S2352146514001161. The Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22–24 October 2014, Delft, The NetherlandsCrossRefGoogle Scholar
  22. 22.
    Tordeux, A., Schadschneider, A.: White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J. Phys. A Math. Theor. (2016). https://doi.org/10.1088/1751-8113/49/18/185101 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tordeux, A., Chraibi, M., Seyfried, A.: Collision-Free Speed Model for Pedestrian Dynamics, pp. 225–232. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-33482-0_29.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentina Kurtc
    • 1
  • Mohcine Chraibi
    • 2
  • Antoine Tordeux
    • 3
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Forschungszentrum JülichJülichGermany
  3. 3.University of WuppertalWuppertalGermany

Personalised recommendations