Towards Faster Navigation Algorithms on Floor Fields

  • Benedikt ZönnchenEmail author
  • Matthias Laubinger
  • Gerta Köster
Conference paper


Many microscopic models for crowd dynamics use floor fields to navigate agents through geometries. Recently, dynamic floor fields were introduced which adapt to changes in geometry and the density of crowds. They significantly increase the realism of floor field-based simulations. However, the computation of floor fields is time consuming. In case of multiple or dynamic floor fields, which require frequent recomputations, the total simulation run time is dominated by their computation. We present an algorithm to construct floor fields for continuous space models that uses unstructured meshes. Due to the geometrical flexibility of unstructured meshes, our method reduces the computational complexity by using fewer but well-positioned mesh points.

Open image in new window


  1. 1.
    Devillers, O.: The Delaunay hierarchy. Int. J. Found. Comput. Sci. 13(02), 163–180 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. In: 17th Annual ACM Symposium on Computational Geometry (SCG), Boston, June 2001, pp. 106–114 (2001)zbMATHGoogle Scholar
  3. 3.
    Hartmann, D., Mille, J., Pfaffinger, A., Royer, C.: Dynamic medium scale navigation using dynamic floor fields. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 1237–1249. Springer, Cham (2014)CrossRefGoogle Scholar
  4. 4.
    Jeong, W.-K., Whitaker, R.T.: A fast iterative method for eikonal equations. SIAM J. Sci. Comput. 30(5), 2512–2534 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 8431–8435. National Academy of Sciences, Washington (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Köster, G., Zönnchen, B.: Queuing at bottlenecks using a dynamic floor field for navigation. In: The Conference in Pedestrian and Evacuation Dynamics 2014, Delft. Transportation Research Procedia, pp. 344–352, (2014)CrossRefGoogle Scholar
  7. 7.
    Persson, P.-O., Strang, G.: A simple mesh generator in matlab. SIAM Rev. 46(2), 329–345 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86(4), 046108 (2012)CrossRefGoogle Scholar
  9. 9.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Thompson, J.F., Soni, B.K., Weatherill, N.P.: Handbook of Grid Generation. CRC-Press, Boca Raton (1999)zbMATHGoogle Scholar
  11. 11.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. (SIGGRAPH 2006) 25(3), 1160–1168 (2006)CrossRefGoogle Scholar
  12. 12.
    VADERE-team: VADERE simulation framework (2016).
  13. 13.
    Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74(250), 603–627 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Benedikt Zönnchen
    • 1
    • 2
    Email author
  • Matthias Laubinger
    • 1
  • Gerta Köster
    • 1
  1. 1.Munich University of Applied SciencesMunichGermany
  2. 2.Technical University of MunichGarchingGermany

Personalised recommendations