Advertisement

Influence of Gender on the Fundamental Diagram and Gait Characteristics

  • Jiayue Wang
  • Maik Boltes
  • Armin Seyfried
  • Antoine Tordeux
  • Jun Zhang
  • Verena Ziemer
  • Wenguo Weng
Conference paper

Abstract

The crowd structures in different public places or mass events are diverse. Areas with a large fraction of children, elderly pedestrians, or women, who are always referred to as vulnerable groups, will require higher standard for facility design and emergency evacuation. The fundamental diagram and gait characteristics, the basic properties for pedestrian traffic flow and human stepping locomotion, respectively, are essential for facility design and emergency evacuation. Therefore to investigate the influence of gender on the fundamental diagram and gait characteristics is one step to improve facility design and public safety. In this paper, results from experiments on single-file movements involving male and female youngsters are introduced. The fundamental diagram and gait characteristic parameters such as free-flow speed, stop space (minimal required distance to the preceding person), and free-flow space (minimal required distance to walk at free-flow speed) are analyzed considering the impacts of gender. It is found that males have significantly larger stop space and smaller free-flow space than females even if these differences are small. Besides, the gait characteristics between males and females are compared.

Notes

Acknowledgements

This study was supported by the German Research Foundation (Grant. No. SE 1789/4-1), the National Science Fund for Distinguished Young Scholars of China (Grant No. 71725006), National Natural Science Foundation of China (Grant No. 71473147), the Joint Funds of Beijing Natural Science Foundation and Beijing Academy of Science and Technology (Grant No. L150010), and the China Scholarship Council (CSC). We are in particular grateful to Daniel Salden, Mohcine Chraibi, Bernhard Steffen, and Yang Zhou.

References

  1. 1.
    Bassey, E.J., Macdonald, I.A., Patrick, J.M.: Factors affecting the heart rate during self-paced walking. Eur. J. Appl. Physiol. Occup. Physiol. 48(1), 105–115 (1982). https://doi.org/10.1007/BF00421170 CrossRefGoogle Scholar
  2. 2.
    Boltes, M., Seyfried, A., Steffen, B., Schadschneider, A.: Automatic Extraction of Pedestrian Trajectories from Video Recordings. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-04504-2 zbMATHGoogle Scholar
  3. 3.
    Boltes, M., Holl, S., Tordeux, A., Seyfried, A., Schadschneider, A., Lang, U., Tordeux, A., Lang, U., Holl, S., Seyfried, A.: Influences of Extraction Techniques on the Quality of Measured Quantities of Pedestrian Characteristics Collective Dynamics 1, 1–618 (2016)Google Scholar
  4. 4.
    Bosina, E., Weidmann, U.: Generic description of the pedestrian fundamental diagram. In: Proceeding of Pedestrian and Evacuation Dynamics 2016, pp. 548–555. 8th International Conference on Pedestrian and Evacuation Dynamics (2016)Google Scholar
  5. 5.
    Cao, S., Zhang, J., Salden, D., Ma, J., Shi, C., Zhang, R.: Pedestrian dynamics in single-file movement of crowd with different age compositions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 94(1), 1–10 (2016).  https://doi.org/10.1103/PhysRevE.94.012312 CrossRefGoogle Scholar
  6. 6.
    Curtis, S., Manocha, D.: Pedestrian simulation using geometric reasoning in velocity space. In: Pedestrian and Evacuation Dynamics 2012, pp. 875–890. Springer, Cham (2014)Google Scholar
  7. 7.
    Fitzpatrick, K., Turner, S., Brewer, M., Carlson, P., Ullman, B., Trout, N., Park, E.S., Whitacre, J., Lalani, N., Lord, D.: Improving Pedestrian Safety at Unsignalized Crossings, vol. 47. Transportation Research Board, Washington (2006). https://doi.org/10.17226/13962
  8. 8.
    Fruin, J.J.: Pedestrian planning and design. Tech. Rep. (1971)Google Scholar
  9. 9.
    Hall, E.T.: The Hidden Dimension. Doubleday & Co, New York (1966)Google Scholar
  10. 10.
    Hediyeh, H.: Investigation of microscopic pedestrian walking behavior. Ph.D. thesis, University of British Columbia (2012). https://doi.org/10.14288/1.0050873
  11. 11.
    Himann, J.E., Cunningham, D.A., Rechnitzer, P.A., Paterson, D.H.: Age-related changes in speed of walking. Med. Sci. Sports Exerc. 20(2), 161–166 (1988)CrossRefGoogle Scholar
  12. 12.
    Hoogendoorn, S.P., Daamen, W.: Pedestrian Behavior at Bottlenecks. Transp. Sci. 39(2), 147–159 (2005).  https://doi.org/10.1287/trsc.1040.0102 CrossRefGoogle Scholar
  13. 13.
    Huo, F., Lv, W., Song, Y.: Experimental study on pedestrian stair descent walking behaviours in building stairs. In: Proceeding of Pedestrian and Evacuation Dynamics 2016, pp. 49–56. Springer, Hefei (2016)Google Scholar
  14. 14.
    Inman, V.T., Ralston, H.J., Todd, F.: Human Walking. Williams & Wilkins, Baltimore (1981)Google Scholar
  15. 15.
    Ishaque, M.M., Noland, R.B.: Behavioural issues in pedestrian speed choice and street crossing behaviour: a review. Transp. Rev. 28(1), 61–85 (2008). https://doi.org/10.1080/01441640701365239 CrossRefGoogle Scholar
  16. 16.
    Li, S., Sayed, T., Zaki, M., Mori, G., Stefanus, F., Khanloo, B., Saunier, N.: Automated collection of pedestrian data through computer vision techniques. Transp. Res. Rec. J. Transp. Res. Board 2299, 121–127 (2012). https://doi.org/10.3141/2299-13 CrossRefGoogle Scholar
  17. 17.
    Narang, S., Best, A., Curtis, S., Manocha, D.: Generating pedestrian trajectories consistent with the fundamental diagram based on physiological and psychological factors. PLos One 10(4), e0117856 (2015).  https://doi.org/10.1371/journal.pone.0117856 CrossRefGoogle Scholar
  18. 18.
    O’Flaherty, C.A., Parkinson, M.H.: Movement on a city centre footway. Traffic Eng. Control 13(10), 434–438 (1972)Google Scholar
  19. 19.
    Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Extreme Environmental Events, vol. 50, pp. 517–550. Springer, New York (2011)CrossRefGoogle Scholar
  20. 20.
    Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86(4), 046108 (2012).  https://doi.org/10.1103/PhysRevE.86.046108 CrossRefGoogle Scholar
  21. 21.
    Tanaboriboon, Y., Guyano, J.A.: Analysis of pedestrian movements in Bangkok. Transp. Res. Rec. 1294, 52–56 (1991)Google Scholar
  22. 22.
    Tanaboriboon, Y., Hwa, S.S., Chor, C.H.: Pedestrian characteristics study in Singapore. J. Transp. Eng. 112(3), 229–235 (1986). https://doi.org/10.1061/(ASCE)0733-947X(1986)112:3(229) CrossRefGoogle Scholar
  23. 23.
    Tordeux, A., Schadschneider, A.: White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J. Phys. A Math. Theor. 49(18), 185101 (2016). https://doi.org/10.1088/1751-8113/49/18/185101 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Versluis, D.: Microscopic interaction behavior between individual pedestrians. Ph.D. thesis, Delft University of Technology (2010). https://doi.org/10.1007/978-3-319-02447-9 Google Scholar
  25. 25.
    Wang, J., Boltes, M., Seyfried, A., Zhang, J., Ziemer, V., Weng, W.: Linking pedestrian flow characteristics with stepping locomotion. Phys. A 500, 106–120 (2018). https://doi.org/10.1016/j.physa.2018.02.021 CrossRefGoogle Scholar
  26. 26.
    Wang, J., Weng, W., Boltes, M., Zhang, J., Tordeux, A., Ziemer, V.: Step styles of pedestrians at different density. J. Stat. Mech. Theor. Exp. 2018(2), 023406 (2018). https://doi.org/10.1088/1742-5468/aaac57 CrossRefGoogle Scholar
  27. 27.
    Weidmann, U.: Transporttechnik der Fussgänger. Transporttechnische Eigenschaften des Fussgängerverkehrs, Literaturauswertung. Tech. Rep. (1992).  https://doi.org/10.3929/ethz-a-000687810
  28. 28.
    Willis, A., Gjersoe, N., Havard, C., Kerridge, J., Kukla, R.: Human movement behaviour in urban spaces: implications for the design and modelling of effective pedestrian environments. Environ. Plan. B Plan. Des. 31(6), 805–828 (2004). https://doi.org/10.1068/b3060 CrossRefGoogle Scholar
  29. 29.
    Wilson, D.G., Grayson, G.B.: Age-related differences in the road crossing behaviour of adult pedestrians. Tech. Rep. (1980)Google Scholar
  30. 30.
    Zhang, J.: Pedestrian Fundamental Diagrams: Comparative Analysis of Experiments in Different Geometries, vol. 14. Forschungszentrum Jülich, Jülich (2012)Google Scholar
  31. 31.
    Zhang, X., Weng, W., Yuan, H., Chen, J.: Empirical study of a unidirectional dense crowd during a real mass event. Physica A 392(12), 2781–2791 (2013). https://doi.org/10.1016/j.physa.2013.02.019 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jiayue Wang
    • 1
    • 2
    • 3
  • Maik Boltes
    • 3
  • Armin Seyfried
    • 3
    • 4
  • Antoine Tordeux
    • 3
  • Jun Zhang
    • 5
  • Verena Ziemer
    • 3
    • 4
  • Wenguo Weng
    • 1
  1. 1.Institute of Public Safety Research, Department of Engineering PhysicsTsinghua UniversityBeijingChina
  2. 2.Center for Capital Social SafetyPeople’s Public Security University of ChinaBeijingChina
  3. 3.Juelich Supercomputing CentreJuelich Research CentreJuelichGermany
  4. 4.Faculty of Architecture and Civil EngineeringUniversity of WuppertalWuppertalGermany
  5. 5.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations