The fetal liver, an important organ with synthetic and hematopoietic functions, undergoes dramatic histological changes during the second and third trimesters of gestation. This chapter reviews the histological changes in the fetal liver evident in hepatocytes, the sinusoidal lining cells, the intrahepatic biliary tree, and the hematopoietic elements and discusses the development of the hepatic vasculature and extrahepatic biliary tree.


Liver Ductal plate Extramedullary hematopoiesis 


  1. 1.
    MacSween RN, Desmet V, Roskams T, Scathorne RJ. Developmental anatomy and normal structure. In: MacSween RN, Burt AD, Portman B, Ishak KG, Scheuer PJ, Anthony PP, editors. Pathology of the liver. 4th ed. London: Churchill Livingstone; 2002. p. 1–67.Google Scholar
  2. 2.
    O’Rahilly R, Müller F. Human embryology and teratology. 3rd ed. New York: Wiley-Liss; 2001.Google Scholar
  3. 3.
    Ruchelli E. Developmental anatomy and congenital anomalies of the liver, gallbladder, and extrahepatic biliary tree. In: Russo P, Ruchelli E, Piccoli D, editors. Pathology of pediatric gastrointestinal and liver disease. New York: Springer; 2004. p. 191–202.CrossRefGoogle Scholar
  4. 4.
    Zhao R, Duncan SA. Embryonic development of the liver. Hepatology. 2005;41:956–67.CrossRefGoogle Scholar
  5. 5.
    Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137:62–79.CrossRefGoogle Scholar
  6. 6.
    Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development. Wiley Interdiscip Rev Dev Biol. 2012;1:643–55.CrossRefGoogle Scholar
  7. 7.
    Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken). 2008;291:614–27.CrossRefGoogle Scholar
  8. 8.
    Saxena R, Zucker SD, Crawford JM. Anatomy and physiology of the liver. In: Zakim D, Boyer TD, editors. Hepatology. 4th ed. Philadelphia: Saunders; 2003. p. 3–30.Google Scholar
  9. 9.
    Ghosh ML, Emery JL. Hypoxia and asymmetrical fibrosis of the liver in children. Gut. 1973;14:209–12.CrossRefGoogle Scholar
  10. 10.
    Emery JL. Asymmetrical liver disease in infancy. J Pathol Bacteriol. 1955;69:219–24.CrossRefGoogle Scholar
  11. 11.
    Timens W, Kamps WA. Hemopoiesis in human fetal and embryonic liver. Microsc Res Tech. 1991;39:387–97.CrossRefGoogle Scholar
  12. 12.
    Naus GJ, Amann GR, Macpherson TA. Estimation of hepatic hematopoiesis in second and third trimester singleton gestations using flow cytometric light scatter analysis of archival autopsy tissue. Early Hum Dev. 1992;30:101–7.CrossRefGoogle Scholar
  13. 13.
    Roskams T, Desmet V, Verslype C. Development, structure and function of the liver. In: Burt AD, Portman B, Ferrell L, editors. MacSween’s pathology of the liver. 5th ed. Philadelphia: Churchill Livingstone Elsevier; 2007. p. 1–74.Google Scholar
  14. 14.
    Singer DB. Hepatic erythropoiesis in infants of diabetic mothers: a morphometric study. Pediatr Pathol. 1986;5:471–9.CrossRefGoogle Scholar
  15. 15.
    Stallmach T, Karolyi L, Lichtlen P, Maurer M, Hebisch G, Joller H, et al. Fetuses from preeclamptic mothers show reduced hepatic erythropoiesis. Pediatr Res. 1998;43:349–54.CrossRefGoogle Scholar
  16. 16.
    Bendon RW, Coventry S. Non-iatrogenic pathology of the preterm infant. Semin Neonatol. 2004;9:281–7.CrossRefGoogle Scholar
  17. 17.
    Miranda RN, Omurtag K, Castellani WJ, De las Casas LE, Quintanilla NM, Kaabipour E. Myelopoiesis in the liver of stillborns with evidence of intrauterine infection. Arch Pathol Lab Med. 2006;130:1786–91.PubMedGoogle Scholar
  18. 18.
    Pfisterer C, Faber R, Horn LC. Chorioamnionitis-induced changes of fetal extramedullar hematopoiesis in the second trimester of gestation. Is diagnosis from fetal autopsy possible? Virchows Arch. 2005;446:150–6.CrossRefGoogle Scholar
  19. 19.
    Dimmick J, Jevon G. Liver disease in the perinatal infant. In: Wigglesworth JS, Singer DB, editors. Textbook of fetal and perinatal pathology. 2nd ed. Oxford: Blackwell Science; 1998. p. 865–99.Google Scholar
  20. 20.
    Hutchins GF, Gollan JL. Recent developments in the pathophysiology of cholestasis. Clin Liver Dis. 2004;8:1–26.CrossRefGoogle Scholar
  21. 21.
    Dimmick J. Hepatobiliary system. In: Dimmick J, Kalousek D, editors. Developmental pathology of the embryo and fetus. Philadelphia: JB Lippincott; 1992. p. 545–78.Google Scholar
  22. 22.
    Sadava D, Frykman P, Harris E, Majerus D, Mustard J, Bernard B. Development of enzymes of glycolysis and gluconeogenesis in human fetal liver. Biol Neonate. 1992;62:89–95.CrossRefGoogle Scholar
  23. 23.
    Ohtani O, Ohtani Y. Lymph circulation in the liver. Anat Rec (Hoboken). 2008;291:643–52.CrossRefGoogle Scholar
  24. 24.
    Naito M, Hasegawa G, Takahashi K. Development, differentiation, and maturation of Kupffer cells. Microsc Res Tech. 1997;39:350–64.CrossRefGoogle Scholar
  25. 25.
    Silver MM, Valberg LS, Cutz E, Lines LD, Phillips MJ. Hepatic morphology and iron quantitation in perinatal hemochromatosis. Comparison with a large perinatal control population, including cases with chronic liver disease. Am J Pathol. 1993;143:1312–25.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Spagnoli FM, Amicone L, Tripodi M, Weiss MC. Identification of a bipotential precursor cell in hepatic cell lines derived from transgenic mice expressing cyto-met in the liver. J Cell Biol. 1998;143:1101–12.CrossRefGoogle Scholar
  27. 27.
    Van Eyken P, Sciot R, Desmet V. Intrahepatic bile duct development in the rat: a cytokeratin-immunohistochemical study. Lab Investig. 1988;59:52–9.PubMedGoogle Scholar
  28. 28.
    Desmet VJ. Ludwig symposium on biliary disorders – part I. Pathogenesis of ductal plate abnormalities. Mayo Clin Proc. 1998;73:80–9.CrossRefGoogle Scholar
  29. 29.
    Poncy A, Antoniou A, Cordi S, Pierreux CE, Jacquemin P, Lemaigre FP. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 2015;404:136–48.CrossRefGoogle Scholar
  30. 30.
    Coffinier C, Gresh L, Fiette L, Tronche F, Schütz G, Babinet C, et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development. 2002;129:1829–38.PubMedGoogle Scholar
  31. 31.
    Lemaigre FP. Development of the biliary tract. Mech Dev. 2003;120:81–7.CrossRefGoogle Scholar
  32. 32.
    Sergi C, Adam S, Kahl P, Otto HF. The remodeling of the primitive human biliary system. Early Hum Dev. 2000;58:167–78.CrossRefGoogle Scholar
  33. 33.
    Crawford JM. Development of the intrahepatic biliary tree. Semin Liver Dis. 2002;22:213–26.CrossRefGoogle Scholar
  34. 34.
    Nakanuma Y, Hoso M, Sanzen T, Sasaki M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc Res Tech. 1997;38:552–70.CrossRefGoogle Scholar
  35. 35.
    Tan CE, Vijayan V. New clues for the developing human biliary system at the porta hepatis. J Hepato-Biliary-Pancreat Surg. 2001;8:295–302.CrossRefGoogle Scholar
  36. 36.
    Terada T. Development of extrahepatic bile duct excluding gall bladder in human fetuses: histological, histochemical, and immunohistochemical analysis. Microsc Res Tech. 2014;77:832–40.CrossRefGoogle Scholar
  37. 37.
    Mirkin LD, Knisely AS. Hyaline cartilage at porta hepatis in extrahepatic biliary atresia. Pediatr Pathol Lab Med. 1997;17:587–91.CrossRefGoogle Scholar
  38. 38.
    Mani VR, Farooq MS, Soni U, Kalabin A, Rajabalan AS, Ahmed L. Case report of ectopic liver on gallbladder serosa with a brief review of the literature. Case Rep Surg. 2016;2016:7273801.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineThe Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations