Advertisement

Future Trends for the Next Generation of Personalized and Integrated Healthcare for Chronic Diseases

  • Sandeep Kumar Vashist
  • Lionel Gilles Guiffo Djoko
  • Stuart Blincko
  • John H. T. Luong
Chapter

Abstract

The rapid advances in point-of-care testing (POCT), mobile healthcare (mH), and smart applications are paving the way toward better healthcare monitoring and management of chronic diseases. In the "not too distant" future, many if not most of the routine tests for chronic diseases could be simply performed by the patients in their homes, offices, and custom settings. The test results are then transmitted securely to the certified healthcare professionals, probably via the Cloud, and stored in the patients’ electronic health record (EHR). The patients and their doctors could see the latest results and trend in the test results, enabling them to take timely decisions and perform the desired intervention for better healthcare management. The interface of mH devices to smartphones (SPs), smartwatches, and other gadgets would further improve the compliance by patients as the care provider could set up customized text alerts and alarm for the tests, medication, and physical/lifestyle/medical intervention. This chapter offers a view of the future trends for next-generation personalized and integrated healthcare for chronic diseases.

Keywords

Personalized and integrated healthcare Chronic diseases Future directions Disease management Point-of-care testing Mobile healthcare Smart applications 

References

  1. 1.
    Vashist SK, Luong JHT. Trends in in vitro diagnostics and mobile healthcare. Biotechnol Adv. 2016;34(3):137–8.CrossRefGoogle Scholar
  2. 2.
    Abegunde DO, Mathers CD, Adam T, Ortegon M, Strong K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet. 2007;370(9603):1929–38.CrossRefGoogle Scholar
  3. 3.
    Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the world health surveys. Lancet. 2007;370(9590):851–8.CrossRefGoogle Scholar
  4. 4.
    IDF Diabetes Atlas: 8th ed. http://diabetesatlas.org/resources/2017-atlas.html. Accessed 18 July 2018.
  5. 5.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.CrossRefGoogle Scholar
  6. 6.
    Vashist SK. Too much sitting: a potential health hazard and a global call to action. J Basic Appl Sci. 2015;11:131.CrossRefGoogle Scholar
  7. 7.
    Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes Care. 2008;31(2):369–71.CrossRefGoogle Scholar
  8. 8.
    Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE. Sedentary behavior: emerging evidence for a new health risk. Mayo Clin Proc. 2010;85(12):1138–41.CrossRefGoogle Scholar
  9. 9.
    Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105–13.CrossRefGoogle Scholar
  10. 10.
    Vashist SK, Luong JHT. Smartphone-based immunoassays. In: Handbook of immunoassay technologies. Amsterdam: Elsevier; 2018. p. 433–53.CrossRefGoogle Scholar
  11. 11.
    Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRefGoogle Scholar
  12. 12.
    Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRefGoogle Scholar
  13. 13.
    Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics (Basel). 2014;4(3):104–28.CrossRefGoogle Scholar
  14. 14.
    Vashist SK, Luong JHT. Diabetes management software and smart applications. In: Point-of-care glucose detection for diabetic monitoring and management. Boca Raton: CRC Press; 2017. p. 135–54.CrossRefGoogle Scholar
  15. 15.
    Data Protection. https://ec.europa.eu/info/law/law-topic/data-protection_en. Accessed 18 July 2018.
  16. 16.
    McAllister M, Dunn G, Payne K, Davies L, Todd C. Patient empowerment: the need to consider it as a measurable patient-reported outcome for chronic conditions. BMC Health Serv Res. 2012;12(1):157.CrossRefGoogle Scholar
  17. 17.
    Househ M, Borycki E, Kushniruk A. Empowering patients through social media: the benefits and challenges. Health Informatics J. 2014;20(1):50–8.CrossRefGoogle Scholar
  18. 18.
    Vashist SK, Luong JHT. Lab-on-a-chip (LOC) immunoassays. In: Handbook of immunoassay technologies. Amsterdam: Elsevier; 2018. p. 415–31.CrossRefGoogle Scholar
  19. 19.
    van Susan D, Beulens JW, van der Schouw Yvonne T, Grobbee DE, Nealb B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17(1_suppl):s3–8.CrossRefGoogle Scholar
  20. 20.
    WHO Depression Global Burden. http://www.who.int/healthinfo/global_burden_disease/en/. Accessed 18 July 2018.
  21. 21.
    IDF World Diabetes Facts. http://www.idf.org/worlddiabetesday/toolkit/gp/facts-figures. Accessed 18 July 2018.
  22. 22.
    WHO Depression. http://www.who.int/mental_health/management/depression/en/. Accessed 18 July 2018.
  23. 23.
    Nestler EJ. Epigenetics: stress makes its molecular mark. Nature. 2012;490(7419):171–2.CrossRefGoogle Scholar
  24. 24.
    Fleischmann A, Saxena S. Suicide prevention in the WHO mental health gap action programme (mhGAP). Crisis. 2013;34(5):295–6.CrossRefGoogle Scholar
  25. 25.
    Pincus HA, Pettit AR. The societal costs of chronic major depression. J Clin Psychiatry. 2000;62:5–9.Google Scholar
  26. 26.
    IDF Clinical Guideline Task Force: Global guideline for Type 2 diabetes. http://www.idf.org/webdata/docs/IDF%20GGT2D.pdf. Accessed 18 July 2018.
  27. 27.
    IDF Clinical Guideline Task Force: Global guideline for Type 2 diabetes. http://www.idf.org/sites/default/files/IDF%20T2DM%20Guideline.pdf. Accessed 18 July 2018.
  28. 28.
    European Brain Council Depressive disorders in RU. http://www.europeanbraincouncil.org/pdfs/Documents/Depression%20fact%20sheet%20July%202011.pdf. Accessed 18 July 2018.
  29. 29.
  30. 30.
    Mezuk B, Eaton WW, Albrecht S, Golden SH. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care. 2008;31(12):2383–90.CrossRefGoogle Scholar
  31. 31.
    Katon WJ, Russo JE, Von Korff M, Lin EH, Ludman E, Ciechanowski PS. Long-term effects on medical costs of improving depression outcomes in patients with depression and diabetes. Diabetes Care. 2008;31(6):1155–9.CrossRefGoogle Scholar
  32. 32.
    Grandy S, Chapman R, Fox K. Quality of life and depression of people living with type 2 diabetes mellitus and those at low and high risk for type 2 diabetes: findings from the study to help improve early evaluation and management of risk factors leading to diabetes (SHIELD). Int J Clin Pract. 2008;62(4):562–8.CrossRefGoogle Scholar
  33. 33.
    Egede LE, Nietert PJ, Zheng D. Depression and all-cause and coronary heart disease mortality among adults with and without diabetes. Diabetes Care. 2005;28(6):1339–45.CrossRefGoogle Scholar
  34. 34.
    Egede LE, Zheng D, Simpson K. Comorbid depression is associated with increased health care use and expenditures in individuals with diabetes. Diabetes Care. 2002;25(3):464–70.CrossRefGoogle Scholar
  35. 35.
  36. 36.
  37. 37.
    Adult Obesity Facts. https://www.cdc.gov/obesity/data/adult.html. Accessed 18 July 2018.
  38. 38.
    Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K, et al. Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med. 2011;364(8):719–29.CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4(9):e609–16.CrossRefGoogle Scholar
  41. 41.
    Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1659–724.CrossRefGoogle Scholar
  42. 42.
    Stewart B, Wild CP. World cancer report 2014. Health 2017.Google Scholar
  43. 43.
    Cardiovascular Diseases (CVDs). http://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 18 July 2018.
  44. 44.
    Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013;10(5):274–83.CrossRefGoogle Scholar
  45. 45.
    Samani NJ, van der Harst P. Biological ageing and cardiovascular disease. Heart. 2008;94(5):537–9.CrossRefGoogle Scholar
  46. 46.
    Luepker RV, Murray DM, Jacobs DR Jr, Mittelmark MB, Bracht N, Carlaw R, et al. Community education for cardiovascular disease prevention: risk factor changes in the Minnesota heart health program. Am J Public Health. 1994;84(9):1383–93.CrossRefGoogle Scholar
  47. 47.
    Kahn R, Robertson RM, Smith R, Eddy D. The impact of prevention on reducing the burden of cardiovascular disease. Circulation. 2008;118(5):576–85.CrossRefGoogle Scholar
  48. 48.
    Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104(22):2746–53.CrossRefGoogle Scholar
  49. 49.
    Sexually Transmitted Infections (STIs). http://www.who.int/en/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis). Accessed 18 July 2018.
  50. 50.
    de Sanjose S, Diaz M, Castellsague X, Clifford G, Bruni L, Munoz N, et al. Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect Dis. 2007;7(7):453–9.CrossRefGoogle Scholar
  51. 51.
    Newman L, Kamb M, Hawkes S, Gomez G, Say L, Seuc A, et al. Global estimates of syphilis in pregnancy and associated adverse outcomes: analysis of multinational antenatal surveillance data. PLoS Med. 2013;10(2):e1001396.CrossRefGoogle Scholar
  52. 52.
  53. 53.
    Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163(9):1009–21.CrossRefGoogle Scholar
  54. 54.
    Dye C, Williams BG. The population dynamics and control of tuberculosis. Science. 2010;328(5980):856–61.CrossRefGoogle Scholar
  55. 55.
    Millard J, Ugarte-Gil C, Moore DA. Multidrug resistant tuberculosis. BMJ. 2015;350:h882.CrossRefGoogle Scholar
  56. 56.
    Zignol M, Hosseini MS, Wright A, Weezenbeek CL, Nunn P, Watt CJ, et al. Global incidence of multidrug-resistant tuberculosis. J Infect Dis. 2006;194(4):479–85.CrossRefGoogle Scholar
  57. 57.
    The End TB Strategy. http://www.who.int/tb/strategy/en/. Accessed 18 July 2018.
  58. 58.
    Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med. 1998;338(13):853–60.CrossRefGoogle Scholar
  59. 59.
    Fauci AS. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science. 1988;239(4840):617–22.CrossRefGoogle Scholar
  60. 60.
  61. 61.
    Daley CL, Small PM, Schecter GF, Schoolnik GK, McAdam RA, Jacobs WR Jr, et al. An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus: an analysis using restriction-fragment length polymorphisms. N Engl J Med. 1992;326(4):231–5.CrossRefGoogle Scholar
  62. 62.
    Son D, Lee J, Qiao S, Ghaffari R, Kim J, Lee JE, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol. 2014;9(5):397–404.CrossRefGoogle Scholar
  63. 63.
    Papastergiou M. Exploring the potential of computer and video games for health and physical education: a literature review. Comput Educ. 2009;53(3):603–22.CrossRefGoogle Scholar
  64. 64.
    Peng W, Crouse JC, Lin J-H. Using active video games for physical activity promotion: a systematic review of the current state of research. Health Educ Behav. 2013;40(2):171–92.CrossRefGoogle Scholar
  65. 65.
    Primack BA, Carroll MV, McNamara M, Klem ML, King B, Rich M, et al. Role of video games in improving health-related outcomes: a systematic review. Am J Prev Med. 2012;42(6):630–8.CrossRefGoogle Scholar
  66. 66.
    Godfrey R, Julien M. Urbanisation and health. Clin Med (Lond). 2005;5(2):137–41.CrossRefGoogle Scholar
  67. 67.
    Gong P, Liang S, Carlton EJ, Jiang Q, Wu J, Wang L, et al. Urbanisation and health in China. Lancet. 2012;379(9818):843–52.CrossRefGoogle Scholar
  68. 68.
    WHO launches Global Action Plan on Physical Activity. http://www.who.int/news-room/detail/04-06-2018-who-launches-global-action-plan-on-physical-activity. Accessed 18 July 2018.
  69. 69.
    Global Action Plan for the Prevention and Control of NCDs 2013–2020. http://www.who.int/nmh/publications/ncd-action-plan/en/. Accessed 18 July 2018.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sandeep Kumar Vashist
    • 1
  • Lionel Gilles Guiffo Djoko
    • 2
  • Stuart Blincko
    • 2
  • John H. T. Luong
    • 3
  1. 1.Labsystems Diagnostics OyVantaaFinland
  2. 2.Immunodiagnostic Systems S.A.LiegeBelgium
  3. 3.Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), School of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF)University College CorkCorkIreland

Personalised recommendations