Bioanalytical Parameters in Immunoassays and Their Determination

  • Sandeep Kumar Vashist
  • John H. T. Luong


Immunoassays (IAs) play a prominent role in in vitro diagnostics (IVD) of single or multiple analytes in patient samples, a prerequisite for the monitoring and management of health. Stringent bioanalytical testing in parallel with robust statistical analysis stems from the growing concerns for public health and safety. In addition, the prominent role of statistical analysis should adhere to the recent guidelines provided by the regulatory authorities. The guidelines are regularly updated as reflected by continuously evolving technologies and recent trends in IVD and point-of-care testing (POCT). The IA must provide precision, accuracy, high sensitivity, specificity, reproducibility, and robustness. This chapter provides an overview of the critical bioanalytical parameters and their determination, as desired by the regulatory guidelines.


Bioanalytical parameters Immunoassays In vitro diagnostics Statistical analysis Regulatory guidelines 


  1. 1.
    Trullols E, Ruisanchez I, Rius FX. Validation of qualitative analytical methods. Trends Anal Chem. 2004;23(2):137–45.CrossRefGoogle Scholar
  2. 2.
    Ellison SLR, Fearn T. Characterising the performance of qualitative analytical methods: statistics and terminology. Trends Anal Chem. 2005;24(6):468–76.CrossRefGoogle Scholar
  3. 3.
    Stenman UH. Immunoassay standardization: is it possible, who is responsible, who is capable? Clin Chem. 2001;47(5):815–20.MathSciNetGoogle Scholar
  4. 4.
    Valentin MA, Ma S, Zhao A, Legay F, Avrameas A. Validation of immunoassay for protein biomarkers: bioanalytical study plan implementation to support pre-clinical and clinical studies. J Pharm Biomed Anal. 2011;55(5):869–77.CrossRefGoogle Scholar
  5. 5.
    Guidance for industry – bioanalytical method validation. 2013.
  6. 6.
  7. 7.
    Marquette CA, Blum LJ. State of the art and recent advances in immunoanalytical systems. Biosens Bioelectron. 2006;21(8):1424–33.CrossRefGoogle Scholar
  8. 8.
    Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRefGoogle Scholar
  9. 9.
    Strandberg-Larsen M, Krasnik A. Measurement of integrated healthcare delivery: a systematic review of methods and future research directions. Int J Integr Care. 2009;9(1):e01.CrossRefGoogle Scholar
  10. 10.
    Varkey P, Reller MK, Resar RK. Basics of quality improvement in health care. Mayo Clin Proc. 2007;82:735–9.CrossRefGoogle Scholar
  11. 11.
    Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):S49–52.Google Scholar
  12. 12.
    Armbruster DA, Alexander DB. Sample to sample carryover: a source of analytical laboratory error and its relevance to integrated clinical chemistry/immunoassay systems. Clin Chim Acta. 2006;373(1–2):37–43.CrossRefGoogle Scholar
  13. 13.
    Krouwer JS. Setting performance goals and evaluating total analytical error for diagnostic assays. Clin Chem. 2002;48(6.1):919–27.Google Scholar
  14. 14.
    Kricka LJ. Interferences in immunoassay—still a threat. Clin Chem. 2000;46(8):1037–8.Google Scholar
  15. 15.
    Tate J, Ward G. Interferences in immunoassay. Clin Biochem Rev. 2004;25(2):105–20.Google Scholar
  16. 16.
    Ismail AAA. A radical approach is needed to eliminate interference from endogenous antibodies in immunoassays. Clin Chem. 2005;51(1):25–6.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bjerner J, Nustad K, Norum LF, Olsen KH, Bormer OP. Immunometric assay interference: incidence and prevention. Clin Chem. 2002;48(4):613–21.Google Scholar
  18. 18.
    Niu H, Klem T, Yang J, Qiu Y, Pan L. A biotin-drug extraction and acid dissociation (BEAD) procedure to eliminate matrix and drug interference in a protein complex anti-drug antibody (ADA) isotype specific assay. J Immunol Methods. 2017;446:30–6.CrossRefGoogle Scholar
  19. 19.
    Fernando SA, Wilson GS. Studies of the ‘hook’ effect in the one-step sandwich immunoassay. J Immunol Methods. 1992;151(1–2):47–66.CrossRefGoogle Scholar
  20. 20.
    Class 2 Device Recall CoatACount Direct Androstenedione. 2014.
  21. 21.
    Class 2 Device Recall IMMULITE/IMMULITE 1000 Systems Androstenedione. 2014.
  22. 22.
    Carey G, Lewis SC. Method of handling reagents in a random access protocol. United States Patent, US6498037B1.Google Scholar
  23. 23.
    Gebrian PL, Evers TP. Random access reagent delivery system for use in an automatic clinical analyzer. United States Patent, US7169356B2.Google Scholar
  24. 24.
    Ismail AAA, Walker PL, Cawood ML, Barth JH. Interference in immunoassay is an underestimated problem. Ann Clin Biochem. 2002;39(4):366–73.CrossRefGoogle Scholar
  25. 25.
    Carraro P, Plebani M. Errors in a stat laboratory: types and frequencies 10 years later. Clin Chem. 2007;53(7):1338–42.CrossRefGoogle Scholar
  26. 26.
    Ismail Y, Ismail AA, Ismail AAA. Erroneous laboratory results: what clinicians need to know. Clin Med. 2007;7(4):357–61.CrossRefGoogle Scholar
  27. 27.
    Plebani M. The detection and prevention of errors in laboratory medicine. Ann Clin Biochem. 2010;47(Pt 2):101–10.CrossRefGoogle Scholar
  28. 28.
    Ceriotti F. The role of external quality assessment schemes in monitoring and improving the standardization process. Clin Chim Acta. 2014;432:77–81.CrossRefGoogle Scholar
  29. 29.
    Perich C, Ricós C, Alvarez V, Biosca C, Boned B, Cava F, et al. External quality assurance programs as a tool for verifying standardization of measurement procedures: pilot collaboration in Europe. Clin Chim Acta. 2014;432:82–9.CrossRefGoogle Scholar
  30. 30.
    Taverniers I, De Loose M, Van Bockstaele E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal Chem. 2004;23(8):535–52.CrossRefGoogle Scholar
  31. 31.
    Findlay JW, Smith WC, Lee JW, Nordblom GD, Das I, DeSilva BS, et al. Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J Pharm Biomed Anal. 2000;21(6):1249–73.CrossRefGoogle Scholar
  32. 32.
    Thaler M, Muller C, Schlichtiger A, Grundler K, Moore M, Luppa PB. Steroid binding properties of the 2nd WHO international standard for sex hormone-binding globulin. Clin Chem Lab Med. 2011;49(5):869–72.CrossRefGoogle Scholar
  33. 33.
    Jin M, Wener MH, Bankson DD. Evaluation of automated sex hormone binding globulin immunoassays. Clin Biochem. 2006;39(1):91–4.CrossRefGoogle Scholar
  34. 34.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sandeep Kumar Vashist
    • 1
  • John H. T. Luong
    • 2
  1. 1.Labsystems Diagnostics OyVantaaFinland
  2. 2.Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), School of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF)University College CorkCorkIreland

Personalised recommendations