Commercially Available Smartphone-Based Personalized Mobile Healthcare Technologies

  • Sandeep Kumar Vashist
  • John H. T. Luong


Smartphone-based personalized mobile healthcare devices (SPMHDs) have become efficient with cost-effectiveness for monitoring and management of healthcare, particularly at remote, decentralized, and personal settings. The last few years have witnessed a surge in commercial SPMHDs for tracking blood pressure, physical activity, blood glucose, body weight, body analysis, pulse rate, electrocardiogram, blood oxygen saturation, and sleep quality. As equipped with advanced Bluetooth technology, Cloud computing, smart application, and telemedicine capabilities, SPMHDs are capable of real-time “on-site” analysis and increasing the user’s compliance by providing constant alerts and notifications. Moreover, they have the most extensive outreach as smartphones have become ubiquitous. With continuous innovation and improvement in mobile healthcare (mH), the next-generation SPMHDs will play a critical role in personalized healthcare to reduce the healthcare costs with improved health outcomes. This chapter provides a comprehensive overview, prospects, and applications of the commercial SPMHDs along with the challenges.


Smartphone Devices Smart applications Personalized healthcare Mobile healthcare 


  1. 1.
    Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014.Google Scholar
  2. 2.
    Thilakanathan D, Chen S, Nepal S, Calvo R, Alem L. A platform for secure monitoring and sharing of generic health data in the Cloud. Futur Gener Comput Syst. 2014;35:102–13.CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRefGoogle Scholar
  5. 5.
    You DJ, Park TS, Yoon JY. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180–5.CrossRefGoogle Scholar
  6. 6.
    Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.CrossRefGoogle Scholar
  7. 7.
    Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, et al. Lensfree microscopy on a cellphone. Lab Chip. 2010;10(14):1787–92.CrossRefGoogle Scholar
  8. 8.
    Cooper DC, Callahan B, Callahan P, Burnett L. Mobile image ratiometry: a new method for instantaneous analysis of rapid test strips. Nat Preced. 2012.
  9. 9.
    Cadle BA, Rasmus KC, Varela JA, Leverich LS, O’Neill CE, Bachtell RK, et al. Cellular phone-based image acquisition and quantitative ratiometric method for detecting cocaine and benzoylecgonine for biological and forensic applications. Subst Abus. 2010;4:21–33.Google Scholar
  10. 10.
    Cooper DC. Mobile image ratiometry for the detection of Botrytis cinerea (Gray Mold). Nat Preced. 2012.
  11. 11.
    Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip. 2010;10(11):1417–28.CrossRefGoogle Scholar
  12. 12.
    Bishara W, Sikora U, Mudanyali O, Su TW, Yaglidere O, Luckhart S, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip. 2011;11(7):1276–9.CrossRefGoogle Scholar
  13. 13.
    Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11(2):315–22.CrossRefGoogle Scholar
  14. 14.
    Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M, et al. Cell-phone-based platform for biomedical device development and education applications. PLoS One. 2011;6(3):e17150.CrossRefGoogle Scholar
  15. 15.
    Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.CrossRefGoogle Scholar
  16. 16.
    Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. 2013;13(15):2950–5.CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Geiger GE, Oberding JW, Ward RN, White KD. Blood glucose meter/modem interface arrangement. 2007. U.S. Patent No. 7,181,350. 20 Feb 2007.Google Scholar
  19. 19.
    Peeters JP. Diagnostic radio frequency identification sensors and applications thereof. 2011. U.S. Patent No. 8,077,042. 13 Dec 2011.Google Scholar
  20. 20.
    Shen L, Hagen JA, Papautsky I. Point-of-care colorimetric detection with a smartphone. Lab Chip. 2012;12(21):4240–3.CrossRefGoogle Scholar
  21. 21.
    Lu Y, Shi W, Qin J, Lin B. Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis. 2009;30(4):579–82.CrossRefGoogle Scholar
  22. 22.
    Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.CrossRefGoogle Scholar
  23. 23.
    Zhu H, Sikora U, Ozcan A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 2012;137(11):2541–4.CrossRefGoogle Scholar
  24. 24.
    Thomas MA, Narayan PR, Christian C. Mitigating gaps in reproductive health reporting in outlier communities of Kerala, India—A mobile phone-based health information system. Health Policy Technol. 2012;1(2):69–76.CrossRefGoogle Scholar
  25. 25.
    McGeough CM, O’Driscoll S. Camera phone-based quantitative analysis of C-reactive protein ELISA. IEEE Trans Biomed Circ Syst. 2013;7(5):655–9.CrossRefGoogle Scholar
  26. 26.
    Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem. 2012;51(46):11585–8.CrossRefGoogle Scholar
  27. 27.
    Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011;83(17):6641–7.CrossRefGoogle Scholar
  28. 28.
    Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, et al. Cost-effective and rapid blood analysis on a cell-phone. Lab Chip. 2013;13(7):1282–8.CrossRefGoogle Scholar
  29. 29.
    Benhamou PY, Melki V, Boizel R, Perreal F, Quesada JL, Bessieres-Lacombe S, et al. One-year efficacy and safety of Web-based follow-up using cellular phone in type 1 diabetic patients under insulin pump therapy: the PumpNet study. Diabetes Metab. 2007;33(3):220–6.CrossRefGoogle Scholar
  30. 30.
    Botsis T, Hartvigsen G. Current status and future perspectives in telecare for elderly people suffering from chronic diseases. J Telemed Telecare. 2008;14(4):195–203.CrossRefGoogle Scholar
  31. 31.
    Carrera PM, Dalton AR. Do-it-yourself healthcare: the current landscape, prospects and consequences. Maturitas. 2014;77(1):37–40.CrossRefGoogle Scholar
  32. 32.
    Carter MC, Burley VJ, Nykjaer C, Cade JE. Adherence to a smartphone application for weight loss compared to website and paper diary: pilot randomized controlled trial. J Med Internet Res. 2013;15(4):e32.CrossRefGoogle Scholar
  33. 33.
    Coulter A. Engaging patients in healthcare. McGraw-Hill International; 2011.Google Scholar
  34. 34.
    Donker T, Petrie K, Proudfoot J, Clarke J, Birch MR, Christensen H. Smartphones for smarter delivery of mental health programs: a systematic review. J Med Internet Res. 2013;15(11):e247.CrossRefGoogle Scholar
  35. 35.
    Duffy MB. Humanizing the healthcare experience: the key to improved outcomes. Gastrointest Endosc. 2014;79(3):499–502.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Fiordelli M, Diviani N, Schulz PJ. Mapping mHealth research: a decade of evolution. J Med Internet Res. 2013;15(5):e95.CrossRefGoogle Scholar
  37. 37.
    Franc S, Borot S, Ronsin O, Quesada JL, Dardari D, Fagour C, et al. Telemedicine and type 1 diabetes: is technology per se sufficient to improve glycaemic control? Diabetes Metab. 2014;40(1):61–6.CrossRefGoogle Scholar
  38. 38.
    Free C, Phillips G, Galli L, Watson L, Felix L, Edwards P, et al. The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med. 2013;10(1):e1001362.CrossRefGoogle Scholar
  39. 39.
    Free C, Phillips G, Watson L, Galli L, Felix L, Edwards P, et al. The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis. PLoS Med. 2013;10(1):e1001363.CrossRefGoogle Scholar
  40. 40.
    Honka A, Kaipainen K, Hietala H, Saranummi N. Rethinking health: ICT-enabled services to empower people to manage their health. IEEE Rev Biomed Eng. 2011;4:119–39.CrossRefGoogle Scholar
  41. 41.
    Joe J, Demiris G. Older adults and mobile phones for health: a review. J Biomed Inform. 2013;46(5):947–54.CrossRefGoogle Scholar
  42. 42.
    Kaplan RM, Stone AA. Bringing the laboratory and clinic to the community: mobile technologies for health promotion and disease prevention. Annu Rev Psychol. 2013;64:471–98.CrossRefGoogle Scholar
  43. 43.
    Luxton DD, McCann RA, Bush NE, Mishkind MC, Reger GM. mHealth for mental health: integrating smartphone technology in behavioral healthcare. Prof Psychol-Res Pr. 2011;42(6):505–12.CrossRefGoogle Scholar
  44. 44.
    O’Reilly GA, Spruijt-Metz D. Current mHealth technologies for physical activity assessment and promotion. Am J Prev Med. 2013;45(4):501–7.CrossRefGoogle Scholar
  45. 45.
    Pagoto S. The current state of lifestyle intervention implementation research: where do we go next? Transl Behav Med. 2011;1(3):401–5.CrossRefGoogle Scholar
  46. 46.
    Price M, Yuen EK, Goetter EM, Herbert JD, Forman EM, Acierno R, et al. mHealth: a mechanism to deliver more accessible, more effective mental health care. Clin Psychol Psychother. 2013.Google Scholar
  47. 47.
    Stephens J, Allen J. Mobile phone interventions to increase physical activity and reduce weight: a systematic review. J Cardiovasc Nurs. 2013;28(4):320–9.CrossRefGoogle Scholar
  48. 48.
    Martínez-Pérez B, de la Torre-Díez I, López-Coronado M. Mobile health applications for the most prevalent conditions by the World Health Organization: review and analysis. J Med Internet Res. 2013;15(6).CrossRefGoogle Scholar
  49. 49.
    Phillips G, Felix L, Galli L, Patel V, Edwards P. The effectiveness of M-health technologies for improving health and health services: a systematic review protocol. BMC Res Notes. 2010;3(1):250.CrossRefGoogle Scholar
  50. 50.
    Mosa AS, Yoo I, Sheets L. A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak. 2012;12(1):67.CrossRefGoogle Scholar
  51. 51.
    Bellina L, Missoni E. Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories. Diagn Pathol. 2009;4:19.CrossRefGoogle Scholar
  52. 52.
    Dayer L, Heldenbrand S, Anderson P, Gubbins PO, Martin BC. Smartphone medication adherence apps: potential benefits to patients and providers. J Am Pharm Assoc. 2013;53(2):172.CrossRefGoogle Scholar
  53. 53.
    Hasvold PE, Wootton R. Use of telephone and SMS reminders to improve attendance at hospital appointments: a systematic review. J Telemed Telecare. 2011;17(7):358–64.CrossRefGoogle Scholar
  54. 54.
    Lester RT, Ritvo P, Mills EJ, Kariri A, Karanja S, Chung MH, et al. Effects of a mobile phone short message service on antiretroviral treatment adherence in Kenya (WelTel Kenya1): a randomised trial. Lancet. 2010;376(9755):1838–45.CrossRefGoogle Scholar
  55. 55.
    Montes JM, Medina E, Gomez-Beneyto M, Maurino J. A short message service (SMS)-based strategy for enhancing adherence to antipsychotic medication in schizophrenia. Psychiatry Res. 2012;200(2–3):89–95.CrossRefGoogle Scholar
  56. 56.
    Tripp N, Hainey K, Liu A, Poulton A, Peek M, Kim J, et al. An emerging model of maternity care: smartphone, midwife, doctor? Women Birth. 2014;27(1):64–7.CrossRefGoogle Scholar
  57. 57.
    Demidowich AP, Lu K, Tamler R, Bloomgarden Z. An evaluation of diabetes self-management applications for Android smartphones. J Telemed Telecare. 2012;18(4):235–8.CrossRefGoogle Scholar
  58. 58.
    Rao A, Hou P, Golnik T, Flaherty J, Vu S. Evolution of data management tools for managing self-monitoring of blood glucose results: a survey of iPhone applications. J Diabetes Sci Technol. 2010;4(4):949–57.CrossRefGoogle Scholar
  59. 59.
    Migliore M. Smartphones or tablets for a better communication and education between residents and consultant in a teaching hospital. J Surg Educ. 2013;70(4):437–8.CrossRefGoogle Scholar
  60. 60.
    Payne KFB, Wharrad H, Watts K. Smartphone and medical related App use among medical students and junior doctors in the United Kingdom (UK): a regional survey. BMC Med Inform Decis Mak. 2012;12(1):121.CrossRefGoogle Scholar
  61. 61.
    Lunny C, Taylor D, Memetovic J, Warje O, Lester R, Wong T, et al. Short message service (SMS) interventions for the prevention and treatment of sexually transmitted infections: a systematic review protocol. Syst Rev. 2014;3(1):7.CrossRefGoogle Scholar
  62. 62.
    Muessig KE, Pike EC, Legrand S, Hightow-Weidman LB. Mobile phone applications for the care and prevention of HIV and other sexually transmitted diseases: a review. J Med Internet Res. 2013;15(1):e1.CrossRefGoogle Scholar
  63. 63.
    Lee AWM, Ng JKY, Wong EYW, Tan A, Lau AKY, Lai SFY. Lecture Rule No. 1: Cell phones ON, please! A low-cost personal response system for learning and teaching. J Chem Educ. 2013;90(3):388–9.CrossRefGoogle Scholar
  64. 64.
    Wallace S, Clark M, White J. ‘It’s on my iPhone’: attitudes to the use of mobile computing devices in medical education, a mixed-methods study. BMJ Open. 2012;2(4).CrossRefGoogle Scholar
  65. 65.
    Lau JK, Lowres N, Neubeck L, Brieger DB, Sy RW, Galloway CD, et al. iPhone ECG application for community screening to detect silent atrial fibrillation: a novel technology to prevent stroke. Int J Cardiol. 2013;165(1):193–4.CrossRefGoogle Scholar
  66. 66.
    Peck JL, Stanton M, Reynolds GE. Smartphone preventive health care: parental use of an immunization reminder system. J Pediatr Health Care. 2014;28(1):35–42.CrossRefGoogle Scholar
  67. 67.
    Lwin MO, Vijaykumar S, Fernando ON, Cheong SA, Rathnayake VS, Lim G, et al. A 21st century approach to tackling dengue: crowdsourced surveillance, predictive mapping and tailored communication. Acta Trop. 2013;130C:100–7.Google Scholar
  68. 68.
    Doyle GJ, Garrett B, Currie LM. Integrating mobile devices into nursing curricula: opportunities for implementation using Rogers’ Diffusion of Innovation model. Nurse Educ Today. 2014;34(5):775–82.CrossRefGoogle Scholar
  69. 69.
  70. 70.
    Xie L, Wang T, Huang T, Hou W, Huang G, Du Y. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye. Sci Rep. 2014;4:6300.CrossRefGoogle Scholar
  71. 71.
  72. 72.
  73. 73.
  74. 74.
  75. 75.
  76. 76.
  77. 77.
    Yang Y, Zhang H, Liu Y, Lin ZH, Lee S, Lin Z, et al. Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano. 2013;7(3):2808–13.CrossRefGoogle Scholar
  78. 78.
  79. 79.
    Woolley CF, Hayes MA. Emerging technologies for biomedical analysis. Analyst. 2014;139(10):2277–88.CrossRefGoogle Scholar
  80. 80.
    Wu WH, Bui AA, Batalin MA, Au LK, Binney JD, Kaiser WJ. MEDIC: medical embedded device for individualized care. Artif Intell Med. 2008;42(2):137–52.CrossRefGoogle Scholar
  81. 81.
  82. 82.
  83. 83.
  84. 84.
  85. 85.
  86. 86.
  87. 87.
  88. 88.
    Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS. Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal Chim Acta. 2011;703(2):124–36.CrossRefGoogle Scholar
  89. 89.
    Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;750:16–27.CrossRefGoogle Scholar
  90. 90.
    Vashist SK. Continuous glucose monitoring systems: a review. Diagnostics. 2013;3(4):385–412.CrossRefGoogle Scholar
  91. 91.
    Gudmundsson J, Besenbacher S, Sulem P, Gudbjartsson DF, Olafsson I, Arinbjarnarson S, et al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci Transl Med. 2010;2(62):62ra92.CrossRefGoogle Scholar
  92. 92.
    Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics (Basel). 2014;4(3):104–28.CrossRefGoogle Scholar
  93. 93.
    Incidence and trends of foodborne illness. 2011.
  94. 94.
    Scharff RL. Economic burden from health losses due to foodborne illness in the United States. J Food Prot. 2012;75(1):123–31.CrossRefGoogle Scholar
  95. 95.
    Bickler PE, Feiner JR, Severinghaus JW. Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology. 2005;102(4):715–9.CrossRefGoogle Scholar
  96. 96.
    Macnab AJ, Smith M, Phillips N, Smart P. Oximeter reliability in a subzero environment. Aviat Space Environ Med. 1996;67(11):1053–6.Google Scholar
  97. 97.
    Schermer T, Leenders J, in ‘t Veen H, van den Bosch W, Wissink A, Smeele I, et al. Pulse oximetry in family practice: indications and clinical observations in patients with COPD. Fam Pract. 2009;26(6):524–31.CrossRefGoogle Scholar
  98. 98.
    Jubran A. Pulse oximetry. Crit Care. 1999;3(2):R11–7.CrossRefGoogle Scholar
  99. 99.
    Sinex JE. Pulse oximetry: principles and limitations. Am J Emerg Med. 1999;17(1):59–67.CrossRefGoogle Scholar
  100. 100.
    Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsasi A. Cloud computing — The business perspective. Decis Support Syst. 2011;51(1):176–89.CrossRefGoogle Scholar
  101. 101.
    Subashini S, Kavitha V. A survey on security issues in service delivery models of cloud computing. J Netw Comput Appl. 2011;34(1):1–11.CrossRefGoogle Scholar
  102. 102.
    Sun DW, Chang GR, Sun LN, Wang XW. Surveying and analyzing security, privacy and trust issues in cloud computing environments. Proc Eng. 2011;15:2852–6.CrossRefGoogle Scholar
  103. 103.
    Zissis D, Lekkas D. Addressing cloud computing security issues. Futur Gener Comput Syst. 2012;28(3):583–92.CrossRefGoogle Scholar
  104. 104.
    Li M, Yu SC, Zheng Y, Ren K, Lou WJ. Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Trans Parall Distr. 2013;24(1):131–43.CrossRefGoogle Scholar
  105. 105.
    Schweitzer EJ. Reconciliation of the cloud computing model with US federal electronic health record regulations. J Am Med Inform Assoc. 2012;19(2):161–5.CrossRefGoogle Scholar
  106. 106.
    Blumenthal D, Tavenner M. The “meaningful use” regulation for electronic health records. N Engl J Med. 2010;363(6):501–4.CrossRefGoogle Scholar
  107. 107.
    Blumenthal D. Launching HITECH. N Engl J Med. 2010;362(5):382–5.CrossRefGoogle Scholar
  108. 108.
    Dinh HT, Lee C, Niyato D, Wang P. A survey of mobile cloud computing: architecture, applications, and approaches. Wirel Commun Mob Comput. 2013;13(18):1587–611.CrossRefGoogle Scholar
  109. 109.
    Boulos MN, Wheeler S, Tavares C, Jones R. How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. Biomed Eng Online. 2011;10(1):24.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sandeep Kumar Vashist
    • 1
  • John H. T. Luong
    • 2
  1. 1.Labsystems Diagnostics OyVantaaFinland
  2. 2.Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), School of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF)University College CorkCorkIreland

Personalised recommendations