Advertisement

Comparison of the Non-personalized Active Learning Strategies Used in Recommender Systems

  • Georges ChaayaEmail author
  • Jacques Bou Abdo
  • Elisabeth Métais
  • Raja Chiky
  • Jacques Demerjian
  • Kablan Barbar
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 341)

Abstract

The study of recommender systems is essential nowadays due to its great effect on businesses and customer satisfaction. Different active learning strategies were previously developed to gain ratings from the users on specific items, and this enables the system to have more information and consequently make more accurate recommendations. In previous studies, these strategies were evaluated using a different selection of metrics in each work, and the experimentations were done on different datasets. In this paper, we solve these weaknesses by comparing the main ten non-personalized strategies on a fair ground, by simulating them against two datasets and using seven of the mostly agreed upon metrics. This gives more trust and less biased results when comparing their performances. Also, the analysis of the computation time and the elicitation efficiency is added.

Keywords

Recommender systems Collaborative filtering Active learning Cold-start problem Non-personalized strategies Accuracy metrics 

References

  1. 1.
    Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-85820-3_3CrossRefGoogle Scholar
  2. 2.
    de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 119–159. Springer, Boston, MA (2015).  https://doi.org/10.1007/978-1-4899-7637-6_4CrossRefGoogle Scholar
  3. 3.
    Wang, Y., Chan, S.C.-F., Ngai, G.: Applicability of demographic recommender system to tourist attractions: a case study on trip advisor. In: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, WI-IAT 2012, vol. 03, pp. 97–101. IEEE Computer Society, Washington, DC (2012)Google Scholar
  4. 4.
    Beliakov, G., Calvo, T., James, S.: Aggregation functions for recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 777–808. Springer, Boston, MA (2015).  https://doi.org/10.1007/978-1-4899-7637-6_23CrossRefGoogle Scholar
  5. 5.
    Burke, R.: Knowledge-based recommender systems (2000)Google Scholar
  6. 6.
    Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Constraint-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 161–190. Springer, Boston, MA (2015).  https://doi.org/10.1007/978-1-4899-7637-6_5CrossRefGoogle Scholar
  7. 7.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  8. 8.
    Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 77–118. Springer, Boston (2015).  https://doi.org/10.1007/978-1-4899-7637-6_3CrossRefGoogle Scholar
  9. 9.
    Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107–144. Springer, Boston, MA (2011).  https://doi.org/10.1007/978-0-387-85820-3_4CrossRefGoogle Scholar
  10. 10.
    Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)CrossRefGoogle Scholar
  11. 11.
    Degemmis, M., Lops, P., Semeraro, G.: A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation. User Model. User-Adap. Inter. 17(3), 217–255 (2007)CrossRefGoogle Scholar
  12. 12.
    Adomavicius, G., Kwon, Y.: Multi-criteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 847–880. Springer, Boston, MA (2015).  https://doi.org/10.1007/978-1-4899-7637-6_25CrossRefGoogle Scholar
  13. 13.
    Elahi, M., Ricci, F., Repsys, V.: System-wide effectiveness of active learning in collaborative filtering. In: Bonchi, F., Buntine, W., Gavald, R., Gu, S. (eds.) International Workshop on Social Web Mining, Co-located with IJCAI, Universitat de Barcelona, Spain, p. 1 (2011)Google Scholar
  14. 14.
    Kutty, S., Yu, F.: Recommendations and predictions with ET greedy active learning. Technical report, Electrical Engineering and Computer Science Department of University of Michigan (2009)Google Scholar
  15. 15.
    Elahi, M., Ricci, F., Rubens, N.: A survey of active learning in collaborative filtering recommender systems. Comput. Sci. Rev. 20, 29–50 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kohrs, A., Merialdo, B.: Improving collaborative filtering for new users by smart object selection. In: Proceedings of International Conference on Media Features, ICMF (2001)Google Scholar
  17. 17.
    Rubens, N., Sugiyama, M.: Influence-based collaborative active learning. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, pp. 145–148. ACM, New York (2007)Google Scholar
  18. 18.
    Rashid, A.M., et al.: Getting to know you: learning new user preferences in recommender systems. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, IUI 2002, pp. 127–134. ACM, New York (2002)Google Scholar
  19. 19.
    Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in recommender systems: an information theoretic approach. ACM SIGKDD Explor. Newsl. 10, 90–100 (2008)CrossRefGoogle Scholar
  20. 20.
    Golbandi, N., Koren, Y., Lempel, R.: On bootstrapping recommender systems. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 1805–1808. ACM, New York (2010)Google Scholar
  21. 21.
    Liu, N.N., Meng, X., Liu, C., Yang, Q.: Wisdom of the better few: cold start recommendation via representative based rating elicitation. In: Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, pp. 37–44 (2011)Google Scholar
  22. 22.
    Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19 (2015)CrossRefGoogle Scholar
  23. 23.
    Elahi, M., Repsys, V., Ricci, F.: Rating elicitation strategies for collaborative filtering. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 160–171. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23014-1_14CrossRefGoogle Scholar
  24. 24.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW 1994, pp. 175–186. ACM, New York (1994)Google Scholar
  25. 25.
    Massa, P., Avesani, P.: Trust metrics in recommender systems. In: Golbeck, J. (ed.) Computing with Social Trust, pp. 259–285. Springer, London (2009).  https://doi.org/10.1007/978-1-84800-356-9_10CrossRefGoogle Scholar
  26. 26.
    Schröder, G., Thiele, M., Lehner, W.: Setting goals and choosing metrics for recommender system evaluations. In: UCERSTI2 Workshop at the 5th ACM Conference on Recommender Systems, Chicago, USA (2011)Google Scholar
  27. 27.
    del Olmo, F.H., Gaudioso, E.: Evaluation of recommender systems: a new approach. Expert Syst. Appl. 35(3), 790–804 (2008)CrossRefGoogle Scholar
  28. 28.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  29. 29.
    Powers, D.M.: Evaluation: from precision, recall and f-factor to roc, informedness, markedness and correlation. Technical report, School of Informatics and Engineering, Flinders University Adelaide, South Australia (2007)Google Scholar
  30. 30.
    Hossein, M., Shahraki, N., Bahadorpour, M.: Cold-start problem in collaborative recommender systems: efficient methods based on ask-to-rate technique. J. Comput. Inf. Technol. - CIT 22(2), 105–113 (2014)CrossRefGoogle Scholar
  31. 31.
    Chaaya, G., Metais, E., Bou Abdo, J., Chiky, R., Demerjian, J., Barbar, K.: Evaluating non-personalized single-heuristic active learning strategies for collaborative filtering recommender systems. In: 16th IEEE International Conference on Machine Learning and Applications, Cancun, Mexico (2017)Google Scholar
  32. 32.
    Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, Paul B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer, Boston, MA (2011).  https://doi.org/10.1007/978-0-387-85820-3_8CrossRefGoogle Scholar
  33. 33.
    Chaaya, G., Bou Abdo, J., Demerjian, J., Chiky, R., Metais, E., Barbar, K.: An improved non-personalized combined-heuristic strategy for collaborative filtering recommender systems. In: IEEE Middle East & North Africa COMMunications Conference, MENACOMM (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Georges Chaaya
    • 1
    Email author
  • Jacques Bou Abdo
    • 2
  • Elisabeth Métais
    • 1
  • Raja Chiky
    • 3
  • Jacques Demerjian
    • 4
  • Kablan Barbar
    • 4
  1. 1.CEDRIC Laboratory, CNAMParisFrance
  2. 2.Faculty of Natural and Applied SciencesNotre Dame UniversityDeir El KamarLebanon
  3. 3.LISITE Laboratory, ISEPParisFrance
  4. 4.LARIFA-EDST Laboratory, Faculty of SciencesLebanese UniversityFanarLebanon

Personalised recommendations