The Road to the Future of Healthcare: Transmitting Interoperable Healthcare Data Through a 5G Based Communication Platform

  • Argyro Mavrogiorgou
  • Athanasios Kiourtis
  • Marios Touloupou
  • Evgenia Kapassa
  • Dimosthenis Kyriazis
  • Marinos Themistocleous
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 341)


Current devices and sensors have revolutionized our daily lives, with the healthcare domain exploring and adapting new technologies. The rapid explosion of digital healthcare happened with the help of current 4G LTE technologies including innovations such as the continuous monitoring of patient vitals, teleporting doctors to a virtual environment or leveraging Artificial Intelligence to generate new medical insights. The arised problem is that current 4G LTE based communication platforms will not be able to keep up with the exploding connectivity demands. This is where the new 5G technology comes, expected to support ultra-reliable, low-latency and massive data communications. In this paper, an end-to-end approach is being provided in the healthcare domain for gathering medical data, anonymizing it, cleaning it, making it interoperable, and finally storing it through 5G network technologies, for their transmission to a different location, supporting real-time results and decision-making.


5G network Data integration Data anonymization Data cleaning Data quality Data interoperability Healthcare 



A. Mavrogiorgou and A. Kiourtis would like to acknowledge the financial support from the “Hellenic Foundation for Research & Innovations (HFRI)”. Moreover, part of this work has been partially supported by the 5GTANGO project, funded by the European Commission under Grant number H2020ICT-2016-2 761493 through the Horizon 2020 and 5G-PPP programs (


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    How will 5G impact different industries?
  5. 5.
  6. 6.
    Pires, F., et al.: A platform for integrating physical devices in the Internet of Things. In: Embedded and Ubiquitous Computing (EUC), pp. 234–241. IEEE (2014)Google Scholar
  7. 7.
    Gong, P.: Dynamic integration of biological data sources using the data concierge. Health Inf. Sci. Syst. 1, 1–19 (2013)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    El Emam, K., Arbuckle, L.: Anonymizing Health Data: Case Studies and Methods to get you started, 2nd edn, p. 1005. O’Reilly Media Inc., Newton (2013)Google Scholar
  10. 10.
    Kruger, P., Hancke, G.: Benchmarking internet of things data sources. In: 12th IEEE International Conference on Industrial Informatics (INDIN). IEEE (2014)Google Scholar
  11. 11.
    Macfarlane, S., Tannath, T., Scott, J., Kelly, V.: The validity and reliability of global positioning systems in team sport: a brief review. JSCR 30(5), 1470–1490 (2016)Google Scholar
  12. 12.
    Mead, C.: Data interchange standards in healthcare IT-computable semantic interoperability. JHIM 20, 71–78 (2006)Google Scholar
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    Mishra, A., Agrawal, P.: Continuous health condition monitoring by 24 × 7 sensing and transmission of physiological data over 5G cellular channels. In: ICNC, pp. 584–590 (2015)Google Scholar
  19. 19.
    Banaee, H., et al.: Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors 13(12), 17472–17500 (2013)CrossRefGoogle Scholar
  20. 20.
    Ryan, M., et al.: Facilitating health behaviour change and its maintenance: interventions based on self-determination theory. Eur. Health Psychol. 10, 2–5 (2008)Google Scholar
  21. 21.
    Oleshchuk, V., Fensli, R.: Remote patient monitoring within a future 5G infrastructure. Wirel. Pers. Commun. 57, 431–439 (2011)CrossRefGoogle Scholar
  22. 22.
    Mattos, W., Gondim, P.: M-health solutions using 5G networks and M2M communications. IT Prof. 18(3), 24–29 (2016)CrossRefGoogle Scholar
  23. 23.
    Leventer-Roberts, M., Balicer, R.: Data integration in health care. In: Amelung, V., Stein, V., Goodwin, N., Balicer, R., Nolte, E., Suter, E. (eds.) Handbook Integrated Care, pp. 121–129. Springer, Cham (2017). Scholar
  24. 24.
    Rolim, C.O., et al.: A cloud computing solution for patient’s data collection in health care institutions. In: Second International Conference on ETELEMED 2010. IEEE (2010)Google Scholar
  25. 25.
    Carbonaro, A., Piccinini, F., Reda, R.: Integrating heterogeneous data of healthcare devices to enable domain data management. JeLKS 14(1), 45–56 (2018)Google Scholar
  26. 26.
    Pötter, B., Sztajnberg, A.: Adapting heterogeneous devices into an IoT context-aware infrastructure. In: Software Engineering for Adaptive and Self-Managing, pp. 64–74. ACM (2016)Google Scholar
  27. 27.
  28. 28.
    Globle, C., et al.: Transparent access to multiple bioinformatics information sources. IBM Syst. J. 40, 534–551 (2001)Google Scholar
  29. 29.
    Donelson, L., et al.: The BioMediator system as a data integration tool to answer diverse biologic queries. In: Proceedings of MedInfo, pp. 768–772 (2004)Google Scholar
  30. 30.
    Philippi, S.: Light-weight integration of molecular biological databases. Bioinformatics 20, 51–57 (2004)CrossRefGoogle Scholar
  31. 31.
    Eckman, B., Lacroix, Z., Raschid, L.: Optimized seamless integration of biomolecular data. In: IEEE International Conference on Bioinformatics and Biomedical Engineering, pp. 23–32 (2001)Google Scholar
  32. 32.
    Martín, L., et al.: Ontology based integration of distributed and heterogeneous data sources in ACGT. In: HEALTHINF, pp. 301–306 (2008)Google Scholar
  33. 33.
    Jabbar, S., et al.: Semantic interoperability in heterogeneous IoT infrastructure for healthcare. Wirel. Commun. Mobile Comput. (2017)Google Scholar
  34. 34.
    Truta, T., Vina, B.: Privacy protection: p-sensitive k-anonymity property. In: 22nd International Conference on Data Engineering Workshops, Atlanta (2006)Google Scholar
  35. 35.
    El Emam, K.: Data anonymization practices in clinical research. a descriptive study. University of Ottawa (2006)Google Scholar
  36. 36.
    El Emam, K., et al.: A systematic review of re-identification attacks on health data. PLoS One 6(12), e28071 (2011)CrossRefGoogle Scholar
  37. 37.
    Zhong, S., et al.: Privacy-enhancing k-anonymization of customer data. In: PODS 2005, pp. 139–147 (2004)Google Scholar
  38. 38.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Unc. Fuzz. Knowl. Based Syst. 10(5), 557–570 (2002)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Benjamin, E., et al.: Systematic literature review on the anonymization of high dimensional streaming datasets for health data sharing. Procedia Comput. Sci. 63, 348–355 (2015)CrossRefGoogle Scholar
  40. 40.
    Dubovitskaya, A., Urovi, V., Vasirani, M., Aberer, K., Schumacher, M.I.: A cloud-based eHealth architecture for privacy preserving data integration. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 585–598. Springer, Cham (2015). Scholar
  41. 41.
    Li, H., et al.: (a, k)-anonymous scheme for privacy-preserving data collection in IoT-based healthcare services systems. J. Med. Syst. 42(3), 56 (2018)CrossRefGoogle Scholar
  42. 42.
    Lu, Y., Sinnott, R.O., Verspoor, K.: A semantic-based k-anonymity scheme for health record linkage. Stud. Health Technol. Inform. 239, 84–90 (2017)Google Scholar
  43. 43.
    Lu, Y., Verspoor, K., Sinnott, R.O., Parampalli, U.: Effective preservation of privacy during record linkage. In: School of Computing and Information Systems, p. 25 (2017)Google Scholar
  44. 44.
    Fatima, A., Nazir, N., Gufran, K.: Data cleaning in data warehouse: a survey of data pre-processing techniques and tools. JITCS 9, 50–61 (2017)Google Scholar
  45. 45.
    Rahm, E., Do, H.: Data cleaning: problems and current approaches. IEEE Bull. Tech. Comm. Data Eng. 23(4), 2000–2012 (2000)Google Scholar
  46. 46.
    Krishnan, S., Haas, D., Franklin, M., Wu, E.: Towards reliable interactive data cleaning: a user survey and recommendations. In: HILDA, California (2016)Google Scholar
  47. 47.
    Dallachiesa, M., et al.: NADEEF: a commodity data cleaning system. In: ACM SIGMOD International Conference on Management of Data, New York (2013)Google Scholar
  48. 48.
    Dagade, A., Mali, M., Pathak, N.: Survey of data duplication detection and elimination in domain dependent and domain-independent databases. IJARCSMS 4(5), 238–243 (2016)Google Scholar
  49. 49.
    Benjelloun, O., et al.: Swoosh: A Generic Approach to Entity Resolution. Stanford InfoLab, Stanford (2005)Google Scholar
  50. 50.
    Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost-based model and effective heuristic for repairing constraints by value modification. In: ACM SIGMOD (2005)Google Scholar
  51. 51.
    Cong, G., Fan, W., Geerts, G., Jia, X., Ma, S.: Improving data quality: consistency and accuracy. In: The 33rd International Conference on Very Large Data Bases, Vienna (2007)Google Scholar
  52. 52.
    Fan, W., et al.: Towards certain fixes with editing rules and master data. VLDB J. 21(2), 213–238 (2012)CrossRefGoogle Scholar
  53. 53.
    Yakout, M., et al.: Guided data repair. Proc. VLDB Endowment 4(5), 279–289 (2011)CrossRefGoogle Scholar
  54. 54.
    Cheng, K., Hong, J.: A novel data cleaning with data matching. Adv. Sci. Technol. Lett. 136, 161–169 (2016)CrossRefGoogle Scholar
  55. 55.
    Gohel, A., et al.: A commodity data cleaning system. Int. Res. J. Eng. Technol. 4(5), 1011–1014 (2017)Google Scholar
  56. 56.
    Joseph, W.: Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 19(1), 231 (2005)Google Scholar
  57. 57.
    Toporkov, A.: Criteria and methods for assessing reliability of medical equipment. Biomed. Eng. 42(1), 11–16 (2008)CrossRefGoogle Scholar
  58. 58.
    Mudasir, A.: Reliability models for the internet of things: a paradigm shift. In: IEEE International Symposium on ISSREW. IEEE (2014)Google Scholar
  59. 59.
    Zin, T.T., et al.: Reliability and availability measures for Internet of Things consumer world perspectives. In: 5th Global Conference on Consumer Electronics. IEEE (2016)Google Scholar
  60. 60.
    Ryan, R., et al.: Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. J. Sci. Med. Sport 20(6), 578–582 (2017)CrossRefGoogle Scholar
  61. 61.
    Kooiman, T., et al.: Reliability and validity of ten consumer activity trackers. BMC Sport. Sci. Med. Rehabil. 7(1), 24 (2015)CrossRefGoogle Scholar
  62. 62.
    Ruggiero, L., et al.: Validity and reliability of two field-based leg stiffness devices: implications for practical use. J. Appl. Biomech. 32(4), 415–419 (2016)CrossRefGoogle Scholar
  63. 63.
    Justin, L., et al.: Reliability and validity of a point-of-care sural nerve conduction device for identification of diabetic neuropathy. PLoS One 9(1), e86515 (2014)CrossRefGoogle Scholar
  64. 64.
    Misra, P., et al.: An interoperable realization of smart cities with plug and play based device management (2015)Google Scholar
  65. 65.
    Rastegar-Mojarad, M., et al.: Need of informatics in designing interoperable clinical registries. Int. J. Med. Inform. 108, 78–84 (2017)CrossRefGoogle Scholar
  66. 66.
    Introduction to HL7 Standards.
  67. 67.
  68. 68.
    The HL7 Clinical Document Architecture.
  69. 69.
    Goossen, W., et al.: Detailed clinical models. Healthc. Inform. 16, 201–214 (2010)CrossRefGoogle Scholar
  70. 70.
    Wardle, M., Spencer, A.: Implementation of SNOMED CT in an online clinical database. Futur. Hosp. J. 4(2), 126–130 (2017)Google Scholar
  71. 71.
    EURECA EU project.
  72. 72.
    Dogac, A., et al.: Artemis: deploying semantically enriched web services in the healthcare domain. Inf. Syst. 31, 321–339 (2006)CrossRefGoogle Scholar
  73. 73.
    Schulz, S., Udo, H.: Part-whole representation and reasoning in formal biomedical ontologies. AI Med. 34(3), 179–200 (2005)Google Scholar
  74. 74.
    Ryan, A., Eklund, P.: A framework for semantic interoperability in healthcare. Stud. Health Tech Inform. 136, 759 (2008)Google Scholar
  75. 75.
    Marsch, P., et al.: 5G radio access network architecture: design guidelines and key considerations. IEEE Commun. Mag. 54(11), 24–32 (2016)CrossRefGoogle Scholar
  76. 76.
  77. 77.
    Ferreira, L., et al.: An architecture to offer cloud-based radio access network as a service. In: European Conference on Networks and Communications. IEEE (2014)Google Scholar
  78. 78.
  79. 79.
  80. 80.
    5G Development and Validation Platform for global Industry-specific Network Services and Apps.
  81. 81.
    Parada, C., et al.: 5GTANGO: A Beyond-MANO Service Platform (in press)Google Scholar
  82. 82.
  83. 83.
    Mavrogiorgou, A., Kiourtis, A., Kyriazis, D.: Plug‘n’play IoT devices: an approach for dynamic data acquisition from unknown heterogeneous devices. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 885–895. Springer, Cham (2018). Scholar
  84. 84.
    Mavrogiorgou, A., Kiourtis, A., Kyriazis, D.: A comparative study of classification techniques for managing IoT devices of common specifications. In: Pham, C., Altmann, J., Bañares, J.Á. (eds.) GECON 2017. LNCS, vol. 10537, pp. 67–77. Springer, Cham (2017). Scholar
  85. 85.
    Kiourtis, A., et al.: Aggregating heterogeneous health data through an ontological common health language. In: DeSE 10th International Conference. IEEE (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Argyro Mavrogiorgou
    • 1
  • Athanasios Kiourtis
    • 1
  • Marios Touloupou
    • 1
  • Evgenia Kapassa
    • 1
  • Dimosthenis Kyriazis
    • 1
  • Marinos Themistocleous
    • 1
    • 2
  1. 1.Department of Digital SystemsUniversity of PiraeusPiraeusGreece
  2. 2.University of NicosiaNicosiaCyprus

Personalised recommendations