Verify-Your-Vote: A Verifiable Blockchain-Based Online Voting Protocol

  • Marwa ChaiebEmail author
  • Souheib Yousfi
  • Pascal Lafourcade
  • Riadh Robbana
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 341)


Blockchain provides the possibility to design new types of applications and systems that allow their users to store data in a secure and transparent way. In this paper, we design a fully verifiable online electronic voting protocol using a blockchain. Our e-voting protocol, called VYV for Verify-Your-Vote, involves cryptographic primitives based on Elliptic-Curve Cryptography (ECC), pairings and Identity Based Encryption (IBE). It ensures the following privacy and security properties: only eligible voter can vote, authentication of the voter, vote privacy, receipt-freeness, fairness, individual and universal verifiability. Furthermore, we formally prove the security of our protocol, using ProVerif tool.


Online e-voting Blockchain Elliptic Curve Cryptography ProVerif Verifiability 


  1. 1.
    Aradhya, P.: Distributed ledger visible to all? Ready for blockchain? In: Huffington Post, April 2016Google Scholar
  2. 2.
    Garay, J.A., Kiayias, A., Panagiotakos, G.: Proofs of work for blockchain protocols. IACR Cryptology ePrint Archive 2017/775 (2017)Google Scholar
  3. 3.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, November 2008Google Scholar
  4. 4.
    Buterin, V.: A next generation smart contract and decentralized application platform (2014)Google Scholar
  5. 5.
    Dreier, J., Lafourcade, P., Lakhnech, Y.: A formal taxonomy of privacy in voting protocols. In: Proceedings of IEEE International Conference on Communications, ICC 2012, pp. 6710–6715. IEEE (2012)Google Scholar
  6. 6.
    Dreier, J., Lafourcade, P., Lakhnech, Y.: Vote-independence: a powerful privacy notion for voting protocols. In: Garcia-Alfaro, J., Lafourcade, P. (eds.) FPS 2011. LNCS, vol. 6888, pp. 164–180. Springer, Heidelberg (2012). Scholar
  7. 7.
  8. 8.
    Followmyvote: Follow my vote (2012).
  9. 9.
    McCorry, P., Shahandashti, Siamak F., Hao, F.: A smart contract for boardroom voting with maximum voter privacy. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 357–375. Springer, Cham (2017). Scholar
  10. 10.
    Gailly, N., Jovanovic, P., Ford, B., Lukasiewicz, J., Gammar, L.: Agora: bringing our voting systems into the 21st century (2018)Google Scholar
  11. 11.
    Nikitin, K., et al.: CHAINIAC: proactive software-update transparency via collectively signed skipchains and verified builds. In: 26th USENIX Security Symposium, Vancouver, BC, Canada, 16–18 August 2017, pp. 1271–1287 (2017)Google Scholar
  12. 12.
    National Institute of Standards and Technology: FIPS PUB 186-2: Digital Signature Standard (DSS). National Institute for Standards and Technology, Gaithersburg, MD, USA, January 2000Google Scholar
  13. 13.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Boneh, D.: Pairing-based cryptography: past, present, and future. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, p. 1. Springer, Heidelberg (2012). Scholar
  16. 16.
    Rossi, F., Schmid, G.: Identity-based secure group communications using pairings. Comput. Netw. 89, 32–43 (2015)CrossRefGoogle Scholar
  17. 17.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369. Springer, Heidelberg (2002). Scholar
  18. 18.
    Aranha, D.F., Knapp, E., Menezes, A., Rodríguez-Henríquez, F.: Parallelizing the Weil and Tate pairings. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 275–295. Springer, Heidelberg (2011). Scholar
  19. 19.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). Scholar
  21. 21.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). Scholar
  22. 22.
    Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). Scholar
  23. 23.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election scheme. In: di Vimercati, S., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005). Scholar
  25. 25.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). Scholar
  26. 26.
    Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: Proverif 1.98pl1: Automatic crypto-graphic protocol verifier, user manual and tutorial (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marwa Chaieb
    • 1
    Email author
  • Souheib Yousfi
    • 2
  • Pascal Lafourcade
    • 3
  • Riadh Robbana
    • 2
  1. 1.Faculty of Sciences of TunisTunisTunisia
  2. 2.National Institute of Applied Science and TechnologyTunisTunisia
  3. 3.LIMOSUniversity Clermont AuvergneClermont-FerrandFrance

Personalised recommendations