Advertisement

Surveillance Video Authentication Using Universal Image Quality Index of Temporal Average

  • Sondos FadlEmail author
  • Qi HanEmail author
  • Qiong Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11378)

Abstract

Inter-frame forgery is a common type of surveillance video forgery where a tampered process occurs in a temporal domain such as frame deletion, insertion, and shuffling. However, there are a number of methods that have been proposed for detecting this type of tampering, most of the methods have been found to be deficient in terms of either accuracy or running time. In this paper, a new approach is proposed as an efficient method for detecting frame deletion, insertion, and shuffling attacks. Firstly, the video is extracted into frames and the temporal average for each non-overlapping subsequence of frames is computed for examination instead of exhaustive checking which can be reduced the running time. Then, the universal image quality index is used for detecting the inter-frame forgery and determining its location. The experimental results show the efficiency of the proposed method for detecting inter-frame forgery with high accuracy and low running time.

Keywords

Passive forensics Inter-frame forgery detection Temporal average Universal image quality index 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant numbers 61471141, 61361166006, 61301099]; Key Technology Program of Shenzhen, China, [grant number JSGG20160427185010977]; Basic Research Project of Shenzhen, China [grant number JCYJ20150513151706561].

References

  1. 1.
    Baudry, S.: Frame-accurate temporal registration for non-blind video watermarking. In: Proceedings of the on Multimedia and Security, MM&Sec 2012, pp. 19–26. ACM, New York (2012).  https://doi.org/10.1145/2361407.2361411
  2. 2.
    Baudry, S., Chupeau, B., Lefèbvre, F.: A framework for video forensics based on local and temporal fingerprints. In: Proceedings of the 16th IEEE International Conference on Image Processing, ICIP’09, pp. 2853–2856. IEEE Press, Piscataway (2009)Google Scholar
  3. 3.
    Cuevas, C., Yanez, E.M., Garcia, N.: Labeled dataset for integral evaluation of moving object detection algorithms: lasiesta. Comput. Vis. Image Underst. 152(Supplement C), 103–117 (2016).  https://doi.org/10.1016/j.cviu.2016.08.005. http://www.gti.ssr.upm.es/data/lasiesta_database.htmlCrossRefGoogle Scholar
  4. 4.
    Fadl, S.M., Han, Q., Li, Q.: Authentication of surveillance videos: detecting frame duplication based on residual frame. J. Forensic Sci. 63(4), 1099–1109 (2018).  https://doi.org/10.1111/1556-4029.13658CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Huang, T.: Exposing video inter-frame forgery by zernike opponentchromaticity moments and coarseness analysis. Multimedia Syst. 23(2), 223–238 (2017).  https://doi.org/10.1007/s00530-015-0478-1MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mao, J., Xiao, G., Sheng, W., Hu, Y., Qu, Z.: A method for video authenticity based on the fingerprint of scene frame. Neurocomputing 173(Part 3), 2022–2032 (2016).  https://doi.org/10.1016/j.neucom.2015.09.001CrossRefGoogle Scholar
  7. 7.
    Nixon, M.S., Aguado, A.S.: Chapter 9-moving object detection and description. In: Nixon, M.S., Aguado, A.S. (eds.) Feature Extraction & Image Processing for Computer Vision, 3rd edn., pp. 435–487. Academic Press, Oxford (2012).  https://doi.org/10.1016/B978-0-12-396549-3.00009-4CrossRefGoogle Scholar
  8. 8.
    Pathak, A., Patil, D.: Review of techniques for detecting video forgeries. Int. J. Comput. Sci. Mobile Comput. 3(2), 422–438 (2014)Google Scholar
  9. 9.
    Qadir, G., Yahaya, S., Ho, A.T.S.: Surrey university library for forensic analysis (SULFA) of video content. In: IET Conference on Image Processing (IPR), pp. 1–6 (2012).  https://doi.org/10.1049/cp.2012.0422,. http://sulfa.cs.surrey.ac.uk/index.php
  10. 10.
    Shi, Y., Qi, M., Yi, Y., Zhang, M., Kong, J.: Object based dual watermarking for video authentication. Optik - Int. J. Light Electron Opt. 124(19), 3827–3834 (2013).  https://doi.org/10.1016/j.ijleo.2012.11.078CrossRefGoogle Scholar
  11. 11.
    Singh, R.D., Aggarwal, N.: Video content authentication techniques: a comprehensive survey. Multimedia Syst. 24(2), 211–240 (2018).  https://doi.org/10.1007/s00530-017-0538-9CrossRefGoogle Scholar
  12. 12.
    Sitara, K., Mehtre, B.: Digital video tampering detection: an overview ofpassive techniques. Digital Investig. 18(Supplement C), 8–22 (2016).  https://doi.org/10.1016/j.diin.2016.06.003CrossRefGoogle Scholar
  13. 13.
    Sohn, H., Neve, W.D., Ro, Y.M.: Privacy protection in video surveillancesystems: analysis of subband-adaptive scrambling in JPEG XR. IEEE Trans. Circuits Syst. Video Technol. 21(2), 170–177 (2011).  https://doi.org/10.1109/TCSVT.2011.2106250. http://ivylab.kaist.ac.kr/demo/vs/dataset.htmCrossRefGoogle Scholar
  14. 14.
    Ulutas, G., Ustubioglu, B., Ulutas, M., Nabiyev, V.: Frameduplication/mirroring detection method with binary features. IET Image Process. 11(5), 333–342 (2017).  https://doi.org/10.1049/iet-ipr.2016.0321CrossRefGoogle Scholar
  15. 15.
    Ulutas, G., Ustubioglu, B., Ulutas, M., Nabiyev, V.V.: Frame duplication detection based on bow model. Multimedia Syst. 24(5), 549–567 (2018).  https://doi.org/10.1007/s00530-017-0581-6CrossRefGoogle Scholar
  16. 16.
    Wahab, A.W.A., Bagiwa, M.A., Idris, M.Y.I., Khan, S., Razak, Z., Ariffin, M.R.K.: Passive video forgery detection techniques: a survey. In: 10th International Conference on Information Assurance and Security, pp. 29–34. IEEE (2014).  https://doi.org/10.1109/ISIAS.2014.7064616
  17. 17.
    Wang, W., Jiang, X., Wang, S., Wan, M., Sun, T.: Identifying video forgery process using optical flow. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 244–257. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43886-2_18CrossRefGoogle Scholar
  18. 18.
    Wang, W., Farid, H.: Exposing digital forgeries in video by detecting duplication. In: Proceedings of the 9th workshop on Multimedia and Security, pp. 35–42. ACM, Dallas, Texas (2007)Google Scholar
  19. 19.
    Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002).  https://doi.org/10.1109/97.995823CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004).  https://doi.org/10.1109/TIP.2003.819861CrossRefGoogle Scholar
  21. 21.
    Zahir, S.A., Kashanchi, F.: A new image quality measure. In: 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–5 (2013).  https://doi.org/10.1109/CCECE.2013.6567730
  22. 22.
    Zhao, D.N., Wang, R.K., Lu, Z.M.: Inter-frame passive-blind forgery detection for video shot based on similarity analysis. Multimedia Tools and Applications (2018).  https://doi.org/10.1007/s11042-018-5791-1CrossRefGoogle Scholar
  23. 23.
    Zheng, L., Sun, T., Shi, Y.-Q.: Inter-frame video forgery detection based on block-wise brightness variance descriptor. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Yang, C.-N. (eds.) IWDW 2014. LNCS, vol. 9023, pp. 18–30. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19321-2_2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
  2. 2.Faculty of Computers and InformationMenoufia UniversityMenofiaEgypt

Personalised recommendations