Advertisement

An Empirical Study of Steganography and Steganalysis of Color Images in the JPEG Domain

  • Théo Taburet
  • Louis Filstroff
  • Patrick BasEmail author
  • Wadih Sawaya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11378)

Abstract

This paper tackles the problem of JPEG steganography and steganalysis for color images, a problem that has rarely been studied so far and which deserves more attention. After focusing on the 4:4:4 sampling strategy, we propose to modify for each channel the embedding rate of J-UNIWARD and UERD steganographic schemes in order to arbitrary spread the payload between the luminance and the chrominance components while keeping a constant message size for the different strategies. We also compare our spreading payload strategy w.r.t. two strategies: (i) the concatenation of the cost map (CONC) or (ii) equal embedding rates (EER) among channels. We then select good candidates within the feature sets designed either for JPEG or color steganography. Our conclusions are threefold: (i) the GFR or DCTR features sets, concatenated on the three channels offer better performance than ColorSRMQ1 for JPEG Quality Factor (QF) of 75 and 95 but ColorSRMQ1 is more sensitive for QF = 100, (ii) the CONC or EER strategies are suboptimal, and (iii) depending of the quality factors and the embedding schemes, the empirical security is maximized when between 33% (QF = 100, UERD) and 95% (QF = 75, J-UNIWARD) of the payload is allocated to the luminance channel.

Keywords

Steganography Steganalysis JPEG Color Features 

Notes

Acknowledgments

The authors would like to thank Rémi Duprès, who designed the pipeline used to perform this set of extensive tests. This work was also partially supported by the French ANR DEFALS program (ANR-16-DEFA-0003).

References

  1. 1.
    Abdulrahman, H., Chaumont, M., Montesinos, P., Magnier, B.: Color image steganalysis based on steerable gaussian filters bank. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 109–114. ACM (2016)Google Scholar
  2. 2.
    Bas, P., Pevny, T., Filler, T.: Bossbase (May 2011). http://exile.felk.cvut.cz/boss
  3. 3.
    Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)CrossRefGoogle Scholar
  4. 4.
    Goljan, M., Fridrich, J.: CFA-aware features for steganalysis of color images. In: IS&T/SPIE Electronic Imaging. pp. 94090V–94090V. International Society for Optics and Photonics (2015)Google Scholar
  5. 5.
    Goljan, M., Fridrich, J., Cogranne, R., et al.: Rich model for steganalysis of color images. In: National Conference on Parallel Computing Technologies (PARCOMPTECH), pp. 185–190. IEEE (2015)Google Scholar
  6. 6.
    Guo, L., Ni, J., Su, W., Tang, C., Shi, Y.Q.: Using statistical image model for jpeg steganography: uniform embedding revisited. IEEE Trans. Inf. Forensics Secur. 10(12), 2669–2680 (2015)CrossRefGoogle Scholar
  7. 7.
    Holub, V., Fridrich, J.: Low-complexity features for jpeg steganalysis using undecimated DCT. IEEE Trans. Inf. Forensics Secur. 10(2), 219–228 (2015)CrossRefGoogle Scholar
  8. 8.
    Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014)CrossRefGoogle Scholar
  9. 9.
    Ker, A.D., et al.: Batch steganography and pooled steganalysis. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 265–281. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74124-4_18CrossRefGoogle Scholar
  10. 10.
    Ker, A.D., et al.: Moving steganography and steganalysis from the laboratory into the real world. In: Proceedings of the first ACM workshop on Information hiding and multimedia security, pp. 45–58. ACM (2013)Google Scholar
  11. 11.
    Ker, A.D., Pevnỳ, T., Kodovskỳ, J., Fridrich, J.: The square root law of steganographic capacity. In: Proceedings of the 10th ACM workshop on Multimedia and security, pp. 107–116. ACM (2008)Google Scholar
  12. 12.
    Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)CrossRefGoogle Scholar
  13. 13.
    Li, B., Wang, M., Li, X., Tan, S., Huang, J.: A strategy of clustering modification directions in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 10(9), 1905–1917 (2015)CrossRefGoogle Scholar
  14. 14.
    Song, X., Liu, F., Yang, C., Luo, X., Zhang, Y.: Steganalysis of adaptive jpeg steganography using 2D gabor filters. In: Proceedings of the 3rd ACM workshop on information hiding and multimedia security, pp. 15–23. ACM (2015)Google Scholar
  15. 15.
    Westfeld, A.: F5—a steganographic algorithm. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45496-9_21CrossRefGoogle Scholar
  16. 16.
    Zeng, J., Tan, S., Liu, G., Li, B., Huang, J.: Wisernet: Wider separate-then-reunion network for steganalysis of color images. arXiv preprint arXiv:1803.04805 (2018)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Théo Taburet
    • 1
  • Louis Filstroff
    • 3
  • Patrick Bas
    • 1
    Email author
  • Wadih Sawaya
    • 2
  1. 1.Univ. Lille, CNRS, Centrale LilleLilleFrance
  2. 2.IMT Lille-DouaisUniv. Lille, CNRS, Centrale LilleLilleFrance
  3. 3.IRITUniversité de Toulouse, CNRSToulouseFrance

Personalised recommendations