Advertisement

Improved High Capacity Spread Spectrum-Based Audio Watermarking by Hadamard Matrices

  • Yiming XueEmail author
  • Kai Mu
  • Yan Li
  • Juan Wen
  • Ping Zhong
  • Shaozhang Niu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11378)

Abstract

Traditional spread spectrum-based audio watermarking methods usually use randomly generated pseudonoise sequences for watermark embedding and extraction. In this paper, we use Hadamard sequences, which are rows of Hadamard matrices, to embed and extract watermarks instead of pseudonoise sequences. By exploiting the orthogonality of Hadamard sequences and a technique of sign change, we propose a new spread spectrum-based audio watermarking method. Experimental results show that, compared to the newly high embedding capacity spread spectrum-based audio watermarking method, our method achieves a better perceptual quality and a higher embedding capacity while maintaining almost equal strong robustness. We also provide a theoretical analysis of the security of our method.

Keywords

Spread spectrum Audio watermarking Hadamard sequences Imperceptibility 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. U1536121, 61872368).

References

  1. 1.
    Hua, G., Huang, J., Shi, Y.Q., Goh, J., Thing, V.L.: Twenty years of digital audio watermarking—a comprehensive review. Signal Process. 128, 222–242 (2016).  https://doi.org/10.1016/j.sigpro.2016.04.005. http://www.sciencedirect.com/science/article/pii/S0165168416300263CrossRefGoogle Scholar
  2. 2.
    Malvar, H.S., Florencio, D.A.F.: Improved spread spectrum: a new modulation technique for robust watermarking. IEEE Trans. Signal Process. 51(4), 898–905 (2003).  https://doi.org/10.1109/TSP.2003.809385MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Valizadeh, A., Wang, Z.J.: Correlation-and-bit-aware spread spectrum embedding for data hiding. IEEE Trans. Inf. Forensics Secur. 6(2), 267–282 (2011).  https://doi.org/10.1109/TIFS.2010.2103061CrossRefGoogle Scholar
  4. 4.
    Xiang, Y., Natgunanathan, I., Rong, Y., Guo, S.: Spread spectrum-based high embedding capacity watermarking method for audio signals. IEEE/ACM Trans. Audio Speech Lang. Process. 23(12), 2228–2237 (2015).  https://doi.org/10.1109/TASLP.2015.2476755CrossRefGoogle Scholar
  5. 5.
    Tafreshi, H.F., Shakeri, R., Khattab, T.: Capacious spread spectrum watermarking utilizing hadamard matrix. In: 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 570–575, September 2016.  https://doi.org/10.1109/IWCMC.2016.7577120
  6. 6.
    Zhang, X., Wang, Z.J.: Correlation-and-bit-aware multiplicative spread spectrum embedding for data hiding. In: 2013 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 186–190, November 2013.  https://doi.org/10.1109/WIFS.2013.6707816
  7. 7.
    Zhang, P., Xu, S.Z., Yang, H.Z.: Robust audio watermarking based on extended improved spread spectrum with perceptual masking. Int. J. Fuzzy Syst. 14(2), 289–295 (2012)Google Scholar
  8. 8.
    Ko, B.S., Nishimura, R., Suzuki, Y.: Time-spread echo method for digital audio watermarking. IEEE Trans. Multimed. 7(2), 212–221 (2005).  https://doi.org/10.1109/TMM.2005.843366CrossRefGoogle Scholar
  9. 9.
    Xiang, Y., Natgunanathan, I., Peng, D., Zhou, W., Yu, S.: A dual-channel time-spread echo method for audio watermarking. IEEE Trans. Inf. Forensics Secur. 7(2), 383–392 (2012).  https://doi.org/10.1109/TIFS.2011.2173678CrossRefGoogle Scholar
  10. 10.
    Kalantari, N.K., Akhaee, M.A., Ahadi, S.M., Amindavar, H.: Robust multiplicative patchwork method for audio watermarking. IEEE Trans. Audio Speech Lang. Process. 17(6), 1133–1141 (2009).  https://doi.org/10.1109/TASL.2009.2019259CrossRefGoogle Scholar
  11. 11.
    Kang, H., Yamaguchi, K., Kurkoski, B., Yamaguchi, K., Kobayashi, K.: Full-index-embedding patchwork algorithm for audio watermarking. IEICE - Trans. Inf. Syst. E91–D(11), 2731–2734 (2008)CrossRefGoogle Scholar
  12. 12.
    Maity, S.P., Kundu, M.K., Das, T.S.: Robust ss watermarking with improved capacity. Pattern Recognit. Lett. 28(3), 350–356 (2007).  https://doi.org/10.1016/j.patrec.2006.04.004. http://www.sciencedirect.com/science/article/pii/S0167865506000869. Advances in Visual information ProcessingCrossRefGoogle Scholar
  13. 13.
    Rosa, L.: High capacity wavelet watermarking using CDMA multilevel codes. Via Paolo della Cella 3, 10139 (2009)Google Scholar
  14. 14.
    Doković, D.Ž.: Hadamard matrices of order 764 exist. Combinatorica 28(4), 487–489 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hedayat, A., Wallis, W.D., et al.: Hadamard matrices and their applications. Annals Stat. 6(6), 1184–1238 (1978)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Itu-R, B.S.: Method for objective measurements of perceived audio quality (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yiming Xue
    • 1
    Email author
  • Kai Mu
    • 1
  • Yan Li
    • 2
  • Juan Wen
    • 1
  • Ping Zhong
    • 2
  • Shaozhang Niu
    • 3
  1. 1.College of Information and Electrical EngineeringChina Agricultural UniversityBeijingChina
  2. 2.College of ScienceChina Agricultural UniversityBeijingChina
  3. 3.School of Computer ScienceBeijing University of Posts and TelecommunicationBeijingChina

Personalised recommendations