Advertisement

Hierarchical Financial Structures with Money Cascade

  • Mahendra K. VermaEmail author
Chapter
Part of the New Economic Windows book series (NEW)

Abstract

In this paper we show similarities between turbulence and financial systems. Motivated by similarities between the two systems, we construct a multiscale model for hierarchical financial structures that exhibits a constant cascade of wealth from large financial entities to small financial entities. According to our model, large and intermediate scale financial institutions have a power law distribution. However, it exhibits Maxwellian distribution at individual scales.

Notes

Acknowledgements

I am thankful to Anirban Chakraborti, Supratik Banerjee, Andre Sukhanovskii, Rodion Stepanov, Franck Plunian, Abhishek Kumar, and Kiran Sharma for very useful discussions and ideas.

References

  1. 1.
    Chakrabarti, B.K., Chakraborti, A., Chakravarty, S.R., Chatterjee, A.: Econophysics of Income and Wealth Distributions. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  2. 2.
    Pareto, V.: Cours d’économie politique. Librairie Droz, Paris (1964)Google Scholar
  3. 3.
    Saha, M., Srivastava, B.N.: A Treatise on Heat, 5th edn. Indian Press, Kolkata (1950)Google Scholar
  4. 4.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics. Course of Theoretical Physics, 3rd edn. Elsevier, Oxford (1980)zbMATHGoogle Scholar
  5. 5.
    Ma, S.-K.: Statistical Mechanics. World Scientific, Singapore (1985)CrossRefGoogle Scholar
  6. 6.
    Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. Dokl. Acad. Nauk SSSR 32(1), 16–18 (1941)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Acad. Nauk SSSR 30(4), 301–305 (1941)ADSMathSciNetGoogle Scholar
  8. 8.
    Lesieur, M.: Turbulence in Fluids. Springer, Dordrecht (2008)CrossRefGoogle Scholar
  9. 9.
    Verma, M.K.: Physics of Buoyant Flows: From Instabilities to Turbulence. World Scientific, Singapore (2018)CrossRefGoogle Scholar
  10. 10.
    Pao, Y.-H.: Transfer of turbulent energy and scalar quantities at large wavenumbers. Phys. Fluids 11(6), 1371–1372 (1968)ADSCrossRefGoogle Scholar
  11. 11.
    Leslie, D.C.: Developments in the Theory of Turbulence. Clarendon Press, Oxford (1973)zbMATHGoogle Scholar
  12. 12.
    Ditlevsen, P.D.: Turbulence and Shell Models. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  13. 13.
    Chakrabortiand, A., Chakrabarti, B.K.: Statistical mechanics of money: how saving propensity affects its distribution. Eur. Phys. J. B 17, 167–170 (2000)Google Scholar
  14. 14.
    Patriarca, M., Chakraborti, A., Kaski, K.: Statistical model with a standard \(\Gamma \) distribution. Phys. Rev. E 70, 016104 (2004)Google Scholar
  15. 15.
    Chakraborti, A., Patriarca, M.: Variational Principle for the Pareto Power Law. Phys. Rev. Lett. 103, 228701 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Indian Institute of Technology KanpurKanpurIndia

Personalised recommendations