Advertisement

Chemical Composition of Date Pits: Potential to Extract and Characterize the Lipid Fraction

  • Asif AhmadEmail author
  • Hifsa Imtiaz
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 34)

Abstract

Date palm Phoenix dactylifera L., is recognized as an oldest plant and is grown for its palatable fruit and pit in various Arab countries for centuries. Its fruit is considered as an important source of dietary carbohydrates, fibers, antioxidant compounds, definite unique profile of vitamins and minerals especially the pits are tremendous reservoirs of lipids and protein components. The considerable amount of oil fraction in date pits is not only characterized with stability but also with biological activities and potential health benefits. A variety of techniques are available in scientific literature for extraction of date pit lipid fraction demonstrated significant amount of neutral fats, high molecular weight triglycerides, and sterol contents. Fractionation of pits lipids by Gas-liquid chromatography revealed more unsaturated fatty acids (e.g. oleic acid), less saturated fatty acids (lauric acid) and average amounts of myristic, palmitic and linoleic acids. The greater oil proportion of date seeds make it efficient use as renewable resource with significant value addition to the agricultural products and most commonly recognized for cosmetics, and food products usage. Presence of bioactive substances in this oil makes it a suitable candidate for variety of nutraceuticals and value-added food products.

Keywords

Date pits Lipid extraction Liquid Saturated fatty acids Sterols Unsaturated fatty acids Lauric acid Fibers Fractionation Gas-liquid chromatography 

References

  1. Abbès F, Bouaziz MA, Blecker C, Masmoudi M, Attia H, Besbes S (2011) Date syrup: effect of hydrolytic enzymes (pectinase/cellulase) on physico-chemical characteristics, sensory and functional properties. LWT Food Sci Technol 44:1827–1834.  https://doi.org/10.1016/j.lwt.2011.03.020 CrossRefGoogle Scholar
  2. Abu-Qaoud H (2015) Date palm status and perspective in Palestine. In: Date palm genetic resources and utilization. Springer, Boca Raton, pp 423–439.  https://doi.org/10.1007/978-94-017-9707-8 CrossRefGoogle Scholar
  3. Agboola OS, Adejumo A (2013) Nutritional composition of the fruit of the Nigerian wild date palm, Phoenix dactylifera. World J Dairy Food Sci 8:196–200.  https://doi.org/10.5829/idosi.wjdfs.2013.8.2.81178 CrossRefGoogle Scholar
  4. Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ibrahim MNM (2012) The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ Sci Pollut Res 19:1464–1484.  https://doi.org/10.1007/s11356-011-0709-8 CrossRefGoogle Scholar
  5. Ahmad A, Kaleem M, Ahmed Z, Shafiq H (2015) Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections – a review. Food Res Int 77:221–235.  https://doi.org/10.1016/j.foodres.2015.06.021 CrossRefGoogle Scholar
  6. Ahmad A, Irfan U, Amir RM, Abbasi KS (2017) Development of high energy cereal and nut granola bar. Int J Agric Bio Sci 1(3):13–20Google Scholar
  7. Ahmed MJ, Theydan SK (2012) Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones. Ecotoxicol Environ Saf 84:39–45.  https://doi.org/10.1016/j.ecoenv.2012.06.019 CrossRefPubMedGoogle Scholar
  8. Akasha IA, Campbell L, Euston SR (2012) Extraction and characterisation of protein fraction from date palm fruit seeds. World Acad Sci Eng Technol 70:292–294.  https://doi.org/10.1999/1307-6892/3421 CrossRefGoogle Scholar
  9. Akbari M, Razavizadeh R, Mohebbi G, Barmak A (2012) Oil characteristics and fatty acid profile of seeds from three varieties of date palm (Phoenix dactylifera) cultivars in Bushehr-Iran. Afr J Biotechnol 11:12088–12093.  https://doi.org/10.5897/AJB12.1084 CrossRefGoogle Scholar
  10. Al-Alawi RA, Al-Mashiqri JH, Al-Nadabi JS, Al-Shihi BI, Baqi Y (2017) Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options. Front Plant Sci 8:845.  https://doi.org/10.3389/fpls.2017.00845 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Al-Daihan S, Bhat RS (2012) Antibacterial activities of extracts of leaf, fruit, seed and bark of Phoenix dactylifera. Afr J Biotechnol 11:10021–10025.  https://doi.org/10.5897/AJB11.4309 CrossRefGoogle Scholar
  12. Al-Harrasi A, Rehman NU, Hussain J, Khan AL, Al-Rawahi A, Gilani SA, Al-Broumi M, Ali L (2014) Nutritional assessment and antioxidant analysis of 22 date palm (Phoenix dactylifera) varieties growing in Sultanate of Oman. Asian Pac J Trop Med 7:S591–S598.  https://doi.org/10.1016/S1995-7645(14)60294-7 CrossRefGoogle Scholar
  13. Al-Humaid A, Mousa H, El-Mergawi R, Abdel-Salam A (2010) Chemical composition and antioxidant activity of dates and dates-camel-milk mixtures as a protective meal against lipid peroxidation in rats. Am J Food Technol 5:22–30.  https://doi.org/10.3923/ajft.2010.22.30 CrossRefGoogle Scholar
  14. Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J, Yu X, Liu J, Pan L, Zhang T (2013) Genome sequence of the date palm Phoenix dactylifera L. Nat Commun 4:ncomms3274.  https://doi.org/10.1038/ncomms3274 CrossRefGoogle Scholar
  15. Al-Orf SM, Ahmed MH, Al-Atwai N, Al-Zaidi H, Dehwah A, Dehwah S (2012) Review: nutritional properties and benefits of the date fruits (Phoenix dactylifera L.). Bull Nat Nutr Inst Arab Rep Egypt 39:97.  https://doi.org/10.9755/ejfa.2016-01-104 CrossRefGoogle Scholar
  16. Amani MA, Davoudi MS, Tahvildari K, Nabavi SM, Davoudi MS (2013) Biodiesel production from Phoenix dactylifera as a new feedstock. Ind Crop Prod 43:40–43.  https://doi.org/10.1016/j.indcrop.2012.06.024 CrossRefGoogle Scholar
  17. Amarni F, Kadi H (2010) Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane: comparison with the conventional extraction. Innov Food Sci Emerg Technol 11:322–327.  https://doi.org/10.1016/j.ifset.2010.01.002 CrossRefGoogle Scholar
  18. Assirey EAR (2015) Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J Taibah Univ Sci 9:75–79.  https://doi.org/10.1016/j.jtusci.2014.07.002 CrossRefGoogle Scholar
  19. Baliga MS, Baliga BRV, Kandathil SM, Bhat HP, Vayalil PK (2011) A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int 44:1812–1822.  https://doi.org/10.1016/j.foodres.2010.07.004 CrossRefGoogle Scholar
  20. Basuny AMM, Al-Marzooq MA (2011) Production of mayonnaise from date pit oil. Food Nutr Sci 2:938.  https://doi.org/10.4236/fns.2011.29128 CrossRefGoogle Scholar
  21. Besbes S, Blecker C, Deroanne C, Drira N-E, Attia H (2004) Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chem 84:577–584.  https://doi.org/10.1016/S0308-8146(03)00281-4 CrossRefGoogle Scholar
  22. Biglar M, Khanavi M, Hajimahmoodi M, Hassani S, Moghaddam G, Sadeghi N, Oveisi MR (2012) Tocopherol content and fatty acid profile of different Iranian date seed oils. Iran J Pharm Res IJPR 11:873PubMedGoogle Scholar
  23. Boldor D, Kanitkar A, Terigar BG, Leonardi C, Lima M, Breitenbeck GA (2010) Microwave assisted extraction of biodiesel feedstock from the seeds of invasive Chinese tallow tree. Environ Sci Technol 44:4019–4025.  https://doi.org/10.1021/es100143z CrossRefPubMedGoogle Scholar
  24. Bonsegna S, Bettini S, Pagano R, Zacheo A, Vergaro V, Giovinazzo G, Caminati G, Leporatti S, Valli L, Santino A (2011) Plant oil bodies: novel carriers to deliver lipophilic molecules. Appl Biochem Biotechnol 163:792–802.  https://doi.org/10.1007/s12010-010-9083-0 CrossRefPubMedGoogle Scholar
  25. Breil C, Meullemiestre A, Vian M, Chemat F (2016) Bio-based solvents for green extraction of lipids from oleaginous yeast biomass for sustainable aviation biofuel. Molecules 21:196.  https://doi.org/10.3390/molecules21020196 CrossRefPubMedCentralGoogle Scholar
  26. Breil C, Abert Vian M, Zemb T, Kunz W, Chemat F (2017) “Bligh and dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int J Mol Sci 18:708.  https://doi.org/10.3390/ijms18040708 CrossRefPubMedCentralGoogle Scholar
  27. Camus G, Vogt DA, Kondratowicz AS, Ott M (2013) Lipid droplets and viral infections. Methods Cell Biol 116:167–190.  https://doi.org/10.1016/B978-0-12-408051-5.00009-7. ElsevierCrossRefPubMedGoogle Scholar
  28. Chang W, Zhang M, Zheng S, Li Y, Li X, Li W, Li G, Lin Z, Xie Z, Zhao Z (2015) Trapping toxins within lipid droplets is a resistance mechanism in fungi. Sci Rep 5:15133.  https://doi.org/10.1038/srep15133 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chemat F, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835.  https://doi.org/10.1016/j.ultsonch.2010.11.023 CrossRefPubMedGoogle Scholar
  30. Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325.  https://doi.org/10.1080/15422110903327919 CrossRefGoogle Scholar
  31. Demirbaş A (2008) Production of biodiesel from algae oils. Energy Sources Part A Recover Util Environ Eff 31:163–168.  https://doi.org/10.1080/15567030701521775 CrossRefGoogle Scholar
  32. Deng G-F, Shen C, Xu X-R, Kuang R-D, Guo Y-J, Zeng L-S, Gao L-L, Lin X, Xie J-F, Xia E-Q (2012) Potential of fruit wastes as natural resources of bioactive compounds. Int J Mol Sci 13:8308–8323.  https://doi.org/10.3390/ijms13078308 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Eid NM, Al-Awadi B, Vauzour D, Oruna-Concha MJ, Spencer JP (2013) Effect of cultivar type and ripening on the polyphenol content of date palm fruit. J Agric Food Chem 61:2453–2460.  https://doi.org/10.1021/jf303951e CrossRefPubMedGoogle Scholar
  34. El Arem A, Thouri A, Zekri M, Saafi EB, Ghrairi F, Zakhama A, Achour L (2014) Nephroprotective effect of date fruit extract against dichloroacetic acid exposure in adult rats. Food Chem Toxicol 65:177–184.  https://doi.org/10.1016/j.fct.2013.12.023 CrossRefPubMedGoogle Scholar
  35. Elbasheer EE, Abdalla RS, Elhussein AR, Gadkariem EA (2012) Physico-chemical characteristics of date seed oil grown In Sudan. Am J Appl Sci 9(7):993–999.  https://doi.org/10.3844/ajassp.2012.993.999 CrossRefGoogle Scholar
  36. El-Sharnouby GA, Al-Eid SM (2009) Utilization of enzymes in the production of liquid sugar from dates. Afr J Biochem Res 3:041–047.  https://doi.org/10.5897/AJBR CrossRefGoogle Scholar
  37. El-Sohaimy S, Hafez E (2010) Biochemical and nutritional characterizations of date palm fruits (Phoenix dactylifera L.). J Appl Sci Res 6:1060–1067.  https://doi.org/10.11648/j.ajls.20150304.14 CrossRefGoogle Scholar
  38. Farooq M, Ramli A, Subbarao D (2013) Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J Clean Prod 59:131–140.  https://doi.org/10.1016/j.jclepro.2013.06.015 CrossRefGoogle Scholar
  39. Filipe A, McLauchlan J (2015) Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med 21:34–42.  https://doi.org/10.1016/j.molmed.2014.11.003 CrossRefPubMedGoogle Scholar
  40. Ghasemi NF, González González LM, Chan W, Schenk PM (2016) Progress on lipid extraction from wet algal biomass for biodiesel production. Microb Biotechnol 9:718–726.  https://doi.org/10.1111/1751-7915.12360 CrossRefGoogle Scholar
  41. Habib HM, Ibrahim WH (2009) Nutritional quality evaluation of eighteen date pit varieties. Int J Food Sci Nutr 60:99–111.  https://doi.org/10.1080/09637480802314639 CrossRefPubMedGoogle Scholar
  42. Habib HM, Platat C, Meudec E, Cheynier V, Ibrahim WH (2014) Polyphenolic compounds in date fruit seed (Phoenix dactylifera): characterisation and quantification by using UPLC-DAD-ESI-MS. J Sci Food Agric 94:1084–1089.  https://doi.org/10.1002/jsfa.6387 CrossRefPubMedGoogle Scholar
  43. Habibi-Najafi MB (2011) Date seeds: a novel and inexpensive source of dietary fiber. In: ICFEB 2011. pp 62-B018Google Scholar
  44. Halaby MS, Farag MH, Gerges AH (2014) Potential effect of date pits fortified bread on diabetic rats. Int J Nutri Food Sci 3:49–59.  https://doi.org/10.11648/j.ijnfs.20140302.16 CrossRefGoogle Scholar
  45. Han Y, Wen Q, Chen Z, Li P (2011) Review of methods used for microalgal lipid-content analysis. Energy Procedia 12:944–950.  https://doi.org/10.1016/j.egypro.2011.10.124 CrossRefGoogle Scholar
  46. Hosikian A, Lim S, Halim R, Danquah MK (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Engg 2010:1–11.  https://doi.org/10.1155/2010/391632 CrossRefGoogle Scholar
  47. Hossain MZ, Waly MI, Singh V, Sequeira V, Rahman MS (2014) Chemical composition of date-pits and its potential for developing value-added product – a review. Pol J Food Nutri Sci 64:215–226.  https://doi.org/10.4236/fns.2011.29128 CrossRefGoogle Scholar
  48. Hounslow E, Noirel J, Gilmour DJ, Wright PC (2017) Lipid quantification techniques for screening oleaginous species of microalgae for biofuel production. Eur J Lipid Sci Technol 119:1500469.  https://doi.org/10.1002/ejlt.201500469 CrossRefGoogle Scholar
  49. Jassim SA, Naji MA (2010) In vitro evaluation of the antiviral activity of an extract of date palm (Phoenix dactylifera L.) pits on a Pseudomonas phage. Evid Based Complement Alternat Med 7:57–62.  https://doi.org/10.1093/ecam/nem160 CrossRefPubMedGoogle Scholar
  50. Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183.  https://doi.org/10.1021/ef900704h CrossRefGoogle Scholar
  51. Jones J, Manning S, Montoya M, Keller K, Poenie M (2012) Extraction of algal lipids and their analysis by HPLC and mass spectrometry. J Am Oil Chem Soc 89:1371–1381.  https://doi.org/10.1007/s11746-012-2044-8 CrossRefGoogle Scholar
  52. Juhaimi FA, Ghafoor K, Özcan MM (2014) Physicochemical properties and mineral contents of seven different date fruit (Phoenix dactylifera L.) varieties growing from Saudi Arabia. Environ Monit Assess 186:2165–2170.  https://doi.org/10.1007/s10661-013-3526-3 CrossRefPubMedGoogle Scholar
  53. Kaleem M, Ahmad A, Khalid S, Azam MT (2016) HPLC condition optimization for identification of flavonoids from Carissa opaca. Sci Int (Lahore) 28(1):343–348Google Scholar
  54. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845.  https://doi.org/10.1038/nprot.2015.053 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Khalid S, Ahmad A, Masud T, Asad M, Sandhu M (2016) Nutritional assessment of Ajwa date flesh and pits in comparison to local varieties. J Plant Anim Sci 26:1072–1080Google Scholar
  56. Khalid S, Khalid N, Khan RS, Ahmed H, Ahmad A (2017a) A review on chemistry and pharmacology of Ajwa date fruit and pit. Trends Food Sci Technol 63:60–69.  https://doi.org/10.1016/j.tifs.2017.02.009 CrossRefGoogle Scholar
  57. Khalid S, Ahmad A, Kaleem M (2017b) Antioxidant activity and phenolic contents of Ajwa date and their effect on lipo-protein profile. Funct Foods Health Dis 7(6):396–410.  https://doi.org/10.31989/ffhd.v7i6.337 CrossRefGoogle Scholar
  58. Kim Y-H, Choi Y-K, Park J, Lee S, Yang Y-H, Kim HJ, Park T-J, Kim YH, Lee SH (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315.  https://doi.org/10.1016/j.biortech.2011.04.064 CrossRefPubMedGoogle Scholar
  59. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Math Phys Chem 2:1–8.  https://doi.org/10.12691/jmpc-2-1-1 CrossRefGoogle Scholar
  60. Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77.  https://doi.org/10.1016/j.biortech.2009.03.058 CrossRefPubMedGoogle Scholar
  61. Lee AK, Lewis DM, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy 46:89–101.  https://doi.org/10.1016/j.biombioe.2012.06.034 CrossRefGoogle Scholar
  62. Lemine FMM, Samb A, Zein el Abidine OB, Ahmed MVOM, Djeh T-KO, Boukhary AOMSO (2014) Assessment of physicochemical diversity in fruit of Mauritanian date palm (Phoenix dactylifera L.) cultivars. Afr J Agric Res 9:2167–2176.  https://doi.org/10.5897/AJAR2013.8250 CrossRefGoogle Scholar
  63. Mahmoud A, El-Bana H (2013) Evaluation of olive and palm byproducts in feeding camels. Pak J Nutr 12:879.  https://doi.org/10.3923/pjn.2013.879.885 CrossRefGoogle Scholar
  64. Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–585.  https://doi.org/10.1007/s00709-011-0329-7 CrossRefPubMedGoogle Scholar
  65. Natunen K, Seppälä J, Schwenk D, Rischer H, Spilling K, Tamminen T (2015) Nile Red staining of phytoplankton neutral lipids: species-specific fluorescence kinetics in various solvents. J Appl Phycol 27:1161–1168.  https://doi.org/10.1007/s10811-014-0404-5 CrossRefPubMedGoogle Scholar
  66. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68.  https://doi.org/10.1016/j.pecs.2010.01.003 CrossRefGoogle Scholar
  67. Orabi SH, Shawky SM (2014) Effect of date palm (Phoenix dactylifera) seeds extracts on hematological, biochemical parameters and some fertility indices in male rats. Int J Sci Basic Appl Res 17:137–147.  https://doi.org/10.3923/ajb.2014.119.130 CrossRefGoogle Scholar
  68. Paranthaman R, Kumar PP, Kumaravel S (2012) HPLC and HPTLC determination of caffeine in raw and roasted date seeds (Phoenix dactylifera L). J Chromatogr Sep Tech 1:249–253.  https://doi.org/10.1002/jsfa.6387 CrossRefGoogle Scholar
  69. Parvin S, Easmin D, Sheikh A, Biswas M, Sharma SCD, Jahan MGS, Islam MA, Shovon M, Roy N (2015) Nutritional analysis of date fruits (Phoenix dactylifera L.) in perspective of Bangladesh. Am J Life Sci 3:274–278.  https://doi.org/10.11648/j.ajls.20150304.14 CrossRefGoogle Scholar
  70. Ranjith KR, Hanumantha Rao P, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res 2:61.  https://doi.org/10.3389/fenrg.2014.00061 CrossRefGoogle Scholar
  71. Reis A, Rudnitskaya A, Blackburn GJ, Fauzi NM, Pitt AR, Spickett CM (2013) A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res 54:1812–1824.  https://doi.org/10.1194/jlr.M034330 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rodrigo R, Libuy M, Feliu F, Hasson D (2014) Polyphenols in disease: from diet to supplements. Curr Pharm Biotechnol 15:304–317.  https://doi.org/10.2174/138920101504140825113815 CrossRefPubMedGoogle Scholar
  73. Rumin J, Bonnefond H, Saint-Jean B, Rouxel C, Sciandra A, Bernard O, Cadoret J-P, Bougaran G (2015) The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels 8:42.  https://doi.org/10.1186/s13068-015-0220-4 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Saafi-Ben Salah EB, Flamini G, El Arem A, Issaoui M, Dabbou S, BenYahia L, Ferchichi A, Hammami M, Achour L (2012) Compositional characteristics and aromatic profile of date palm seeds from seven varieties grown in Tunisia. Int J Food Sci Technol 47:1903–1908.  https://doi.org/10.1111/j.1365-2621.2012.03049.x CrossRefGoogle Scholar
  75. Sadiq I, Izuagie T, Shuaibu M, Dogoyaro A, Garba A, Abubakar S (2013) The nutritional evaluation and medicinal value of date palm (Phoenix dactylifera). Int J Mod Chem 4:147–154Google Scholar
  76. Salah EBS-B, El Arem A, Louedi M, Saoudi M, Elfeki A, Zakhama A, Najjar MF, Hammami M, Achour L (2012) Antioxidant-rich date palm fruit extract inhibits oxidative stress and nephrotoxicity induced by dimethoate in rat. J Physiol Biochem 68:47–58.  https://doi.org/10.1007/s13105-011-0118-y CrossRefGoogle Scholar
  77. Saleh EA, Tawfik MS, Abu-Tarboush HM (2011) Phenolic contents and antioxidant activity of various date palm (Phoenix dactylifera L.) fruits from Saudi Arabia. Food Nutr Sci 2:1134.  https://doi.org/10.4236/fns.2011.210152 CrossRefGoogle Scholar
  78. Samad MA, Hashim SH, Simarani K, Yaacob JS (2016) Antibacterial properties and effects of fruit chilling and extract storage on antioxidant activity, total phenolic and anthocyanin content of four date palm (Phoenix dactylifera) cultivars. Molecules 21:419.  https://doi.org/10.3390/molecules21040419 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Saura-Calixto F (2012) Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. J Agric Food Chem 60:11195–11200.  https://doi.org/10.1021/jf303758j CrossRefPubMedGoogle Scholar
  80. Sheng J, Vannela R, Rittmann BE (2011) Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresour Technol 102:1697–1703.  https://doi.org/10.1016/j.biortech.2010.08.007 CrossRefPubMedGoogle Scholar
  81. Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K (2014) Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiol 164:105–118.  https://doi.org/10.1104/pp.113.230185 CrossRefPubMedGoogle Scholar
  82. Shin H-Y, Ryu J-H, Bae S-Y, Crofcheck C, Crocker M (2014) Lipid extraction from Scenedesmus sp. microalgae for biodiesel production using hot compressed hexane. Fuel 130:66–69.  https://doi.org/10.1016/j.fuel.2014.04.023 CrossRefGoogle Scholar
  83. Sitepu I, Ignatia L, Franz A, Wong D, Faulina S, Tsui M, Kanti A, Boundy-Mills K (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods 91:321–328.  https://doi.org/10.1016/j.mimet.2012.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Šoštarič M, Klinar D, Bricelj M, Golob J, Berovič M, Likozar B (2012) Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnol 29:325–331.  https://doi.org/10.1016/j.nbt.2011.12.002 CrossRefGoogle Scholar
  85. Sun X, Lu C, Zhang W, Tian D, Zhang X (2013) Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation. Carbohydr Polym 98:405–411.  https://doi.org/10.1016/j.carbpol.2013.05.089 CrossRefPubMedGoogle Scholar
  86. Suresh S, Guizani N, Al-Ruzeiki M, Al-Hadhrami A, Al-Dohani H, Al-Kindi I, Rahman MS (2013) Thermal characteristics, chemical composition and polyphenol contents of date-pits powder. J Food Eng 119:668–679.  https://doi.org/10.1016/j.jfoodeng.2013.06.026 CrossRefGoogle Scholar
  87. Takeshita T, Takeda K, Ota S, Yamazaki T, Kawano S (2015) A simple method for measuring the starch and lipid contents in the cell of microalgae. Cytologia 80:475–481.  https://doi.org/10.1508/cytologia.80.475 CrossRefGoogle Scholar
  88. Ullah SR, Murphy B, Dorich B, Richter B, Srinivasan K (2011) Fat extraction from acid-and base-hydrolyzed food samples using accelerated solvent extraction. J Agric Food Chem 59:2169–2174.  https://doi.org/10.1021/jf104001d CrossRefPubMedGoogle Scholar
  89. Umate P (2012) Comparative genomics of the lipid-body-membrane proteins oleosin, caleosin and steroleosin in magnoliophyte, lycophyte and bryophyte. Genomics Proteomics Bioinformatics 10:345–353.  https://doi.org/10.1016/j.gpb.2012.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vayalil PK (2012) Date fruits (Phoenix dactylifera Linn): an emerging medicinal food. Crit Rev Food Sci Nutr 52:249–271.  https://doi.org/10.1080/10408398.2010.499824 CrossRefPubMedGoogle Scholar
  91. Wahlroos T, Soukka J, Denesyuk A, Susi P (2015) Amino-terminus of oleosin protein defines the size of oil bodies-topological model of oleosin-oil body complex. J Plant Biochem Physiol 3:155.  https://doi.org/10.4172/2329-9029.1000155 CrossRefGoogle Scholar
  92. Waly MI, Al-Ghafri BR, Guizani N, Rahman MS (2015) Phytonutrient effects of date pit extract against azoxymethane-induced oxidative stress in the rat colon. Asian Pac J Cancer Prev 16:3473–3477.  https://doi.org/10.7314/APJCP.2015.16.8.3473 CrossRefPubMedGoogle Scholar
  93. Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477.  https://doi.org/10.1007/s00726-013-1493-1 CrossRefPubMedGoogle Scholar
  94. Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci 6:348.  https://doi.org/10.3389/fpls.2015.00348 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yao L, Schaich K (2015) Accelerated solvent extraction improves efficiency of lipid removal from dry pet food while limiting lipid oxidation. J Am Oil Chem Soc 92:141–151.  https://doi.org/10.1007/s11746-014-2568-1 CrossRefGoogle Scholar
  96. Zhang C-R, Aldosari SA, Vidyasagar PS, Nair KM, Nair MG (2013) Antioxidant and anti-inflammatory assays confirm bioactive compounds in Ajwa date fruit. J Agric Food Chem 61:5834–5840.  https://doi.org/10.1021/jf401371v CrossRefPubMedGoogle Scholar
  97. Zhao S, Zhang D (2013) A parametric study of supercritical carbon dioxide extraction of oil from Moringa oleifera seeds using a response surface methodology. Sep Purif Technol 113:9–17.  https://doi.org/10.1016/j.seppur.2013.03.041 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Food TechnologyPMAS-Arid Agriculture UniversityRawalpindiPakistan

Personalised recommendations