Advertisement

Analysis of Antioxidants and Nutritional Assessment of Date Palm Fruits

  • B. M. GnanamangaiEmail author
  • S. Saranya
  • P. Ponmurugan
  • S. Kavitha
  • Sudhagar Pitchaimuthu
  • P. Divya
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 34)

Abstract

This chapter highlights on the nutritional and antioxidant constituents of dates. Date palm (Phoenix dactylifera L) assumes a vital role in traditional treatment. Dried date fruit serves as the staple food in many countries of the world for a considerable period of time. Dates are found to be rich in carbohydrates (77.13 g/100 g), predominantly glucose and fructose, but low in proteins (2.61%) and fats (0.35%). Date fruit offers a wide range of essential nutrients and potential health benefits. They also serve as a good source of many vitamins, dietary fiber, minerals, phenolics, carotenoids and antioxidants. Nutritional and medicinal activities of date fruit are related to its chemical compositions, mainly phytochemicals. Due to these important functional compounds, dates exhibit various health benefits by preventing various diseases. Date fruit has antioxidant, anti-mutagenic, anti-inflammatory, gastro-protective, hepato-protective, nephro-protective, anticancer, immune-stimulant activities, antidiabetic, hypocholestrolemic and many other. The chapter likewise depicts the techniques by which the date varieties were shown to exhibit strong antioxidant activity. Considering the detailed information on nutritional and health promoting components, dates are deliberated as an ideal supplement, providing a wide range of essential nutrients and potential health benefit to mankind.

Keywords

Antioxidant Nutrition Medicinal value Date palm Functional food Antioxidant methods DPPH method ABTS method TEAC method FRAP method ORAC method 

References

  1. Abuelgassim AO (2010) Effect of flax seeds and date palm leaves extracts on serum concentrations of glucose and lipids in alloxan diabetic rats. Pak J Biol Sci 13:s1141–s1145.  https://doi.org/10.3923/pjbs.2010.1141.1145 CrossRefGoogle Scholar
  2. Al-Farsi MA, Lee CY (2008) Nutritional and functional properties of dates: a review. Crit Rev Food Sci Nutr 48:877–887.  https://doi.org/10.1080/10408390701724264 CrossRefPubMedGoogle Scholar
  3. Al-Farsi M, Alasalvar C, Morris A, Baron M, Shahidi F (2005) Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53(19):7592–7599.  https://doi.org/10.1021/jf050579q CrossRefPubMedGoogle Scholar
  4. Al-Harrasi A, Rehman NU, Hussain J, Khan AL, Al-Rawahi A, Gilani SA, Al-Broumi M, Ali L (2014) Nutritional assessment and antioxidant analysis of 22 date palm (Phoenix dactylifera) varieties growing in Sultanate of Oman. Asian Pac J Trop Med 7(Suppl 1):S591–S598.  https://doi.org/10.1016/S1995-7645(14)60294-7 CrossRefGoogle Scholar
  5. Al-Hooti S, Sidhu JS, Qabazard H (1997) Physicochemical characteristics of five date fruit cultivars grown in the United Arab Emirates. Plant Foods Hum Nutr 50:101–113.  https://doi.org/10.1007/BF02436030 CrossRefPubMedGoogle Scholar
  6. Al-Hooti S, Sidhu JS, Qabazard H (1998) Chemical composition of seeds of date fruit cultivars of United Arab Emirates. J Food Sci Technol 35:44–46Google Scholar
  7. Ali A, Al-Kindi YSM, Al-Said F (2009) Chemical composition and glycemic index of three varieties of Omani dates. Int J Food Sci Nutr 60:51–62.  https://doi.org/10.1080/09637480802389094 CrossRefPubMedGoogle Scholar
  8. Al-Mamary M, Al-Habor M, Al-Zubairi AS (2011) The in vitro antioxidant activity of different types of palm dates (Phoenix dactylifera) syrups. Arab J Chem 7:964–971.  https://doi.org/10.1016/j.arabjc.11.014 CrossRefGoogle Scholar
  9. Al-Orf SM, Mona HM, Norah A, Al-Atwai, Al-Zaidi H, Dehwah A, Dehwah S (2012) Review: nutritional properties and benefits of the date fruits (Phoenix dactylifera L.). Bull Natl Nutr Inst Arab Republic Egypt 39:97–129Google Scholar
  10. Al-Qarawi AA, Ali BH, Al-Mougy SA, Mousa HM (2003) Gastrointestinal transit in mice treated with various extracts of date (Phoenix dactylifera L.). Food Chem Toxicol 41(1):37–39.  https://doi.org/10.1016/S0278-6915(02)00203-X CrossRefPubMedGoogle Scholar
  11. Al-Saif MA, Khan LK, Alhamdan AAH, Alorf SM, Harfi SH, Al-Othman AM, Arif Z (2007) Effect of dates and Gahwa (Arabian coffee) supplementation on lipids in Hypercholesterolemic hamsters. Int J Pharmacol 3:123–129.  https://doi.org/10.3923/ijp.2007.123.129 CrossRefGoogle Scholar
  12. Al-Shahib W, Marshall RJ (2003) The fruit of the date palm: its possible use as the best food for the future. Int J Food Sci Nutr 54:247–259.  https://doi.org/10.1080/09637480120091982 CrossRefPubMedGoogle Scholar
  13. Amira EA, Guido F, Behija SE, Manel I, Nesrine Z, Ali F, Mohamed H, Noureddine HA, Lotfi A (2011) Chemical and aroma volatile compositions of date palm (Phoenix dactylifera L.) fruits at three maturation stages. Food Chem 127:1744–1754.  https://doi.org/10.1016/j.foodchem.2011.02.051 CrossRefGoogle Scholar
  14. Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K (2002) Methods for testing antioxidant activity. Analyst 127(1):183–198.  https://doi.org/10.1039/B009171P CrossRefPubMedGoogle Scholar
  15. Baliga S, Baliga V, Kandathil S (2011) A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int 44:1812–1822.  https://doi.org/10.1016/j.foodres.2010.07.004 CrossRefGoogle Scholar
  16. Benzie IF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27.  https://doi.org/10.1016/S0076-6879(99)99005-5 CrossRefPubMedGoogle Scholar
  17. Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76:1191–1201.  https://doi.org/10.1093/ajcn/76.6.1191 CrossRefPubMedGoogle Scholar
  18. Biglari F, Alkarkhi AFM, Easa AM (2008) Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem 107:1636–1641.  https://doi.org/10.1016/j.foodchem.2007.10.033 CrossRefGoogle Scholar
  19. Biskup I, Golonka I, Gamian A, Sroka Z (2013) Antioxidant activity of selected phenols estimated by ABTS and FRAP methods. Postepy Hig Med Dosw (Online) 67:958–963.  https://doi.org/10.5604/17322693.1066062 CrossRefGoogle Scholar
  20. Bouaziz MA, Besbes S, Blecker C, Wathelet B, Deroanne C, Attia H (2008) Protein and amino acid profiles of Tunisian Deglet Nour and Allig date palm fruit seeds. Int J Trop Subtrop Hortic 63:37–43.  https://doi.org/10.1051/fruits:2007043 CrossRefGoogle Scholar
  21. Boudries H, Kefalas P, Hornero-Mendez D (2007) Carotenoid composition of Algerian date varieties (Phoenix dactylifera) at different edible maturation stages. Food Chem 101(4):1372–1377.  https://doi.org/10.1016/S0278-6915(02)00203-X CrossRefGoogle Scholar
  22. Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14(3):303–311.  https://doi.org/10.1016/0891-5849(93)90027-R CrossRefPubMedGoogle Scholar
  23. Chaira N, Mrabet A, Ferchichi A (2009) Evaluation of antioxidant activity, phenolics, sugar and mineral contents in date palm fruits. J Food Biochem 33:390–403.  https://doi.org/10.1111/j.1745-4514.2009.00225.x CrossRefGoogle Scholar
  24. Domitrovic R, Jakovac H, Grebic D, Milin C, Radosevic-Stasic B (2008) Dose- and time-dependent effects of luteolin on liver metallothioneins and metals in carbon tetrachloride-induced hepatotoxicity in mice. Biol Trace Elem Res 126:176–185.  https://doi.org/10.1007/s12011-008-8181-0 CrossRefPubMedGoogle Scholar
  25. Dudonne S, Vitrac X, Coutière P, Woillez M, Merillon JM (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57(5):1768–1774.  https://doi.org/10.1021/jf803011r CrossRefPubMedGoogle Scholar
  26. Duke JA (2001) Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, Boca RatonGoogle Scholar
  27. Duke JA, Beckstrom-Sternberg S (2007) Dr. Duke’s ethnobotanical databases. http://www.ars-grin.gov/duke/plants.html
  28. Elleuch M, Besbes S, Roiseux O, Blecker C, Deroanne C, Drira NE, Attia H (2008) Date flesh: chemical composition and characteristics of the dietary fibre. Food Chem 111(3):676–682.  https://doi.org/10.1016/j.foodchem.2008.04.036 CrossRefGoogle Scholar
  29. El-Zoghbi M (1997) Biochemical changes in some tropical fruits during ripening. Food Chem 49:33–37.  https://doi.org/10.1016/0308-8146(94)90229-1 CrossRefGoogle Scholar
  30. Eustache F, Mondon F, Canivenc-Lavier MC, Lesaffre C, Fulla Y, Berges R, Cravedi JP, Vaiman D, Auger J (2009) Chronic dietary exposure to a low-dose mixture of genistein and vinclozolin modifies the reproductive axis, testis transcriptome, and fertility. Environ Health Perspect 117:1272–1279.  https://doi.org/10.1289/ehp.0800158 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Famuyiwa OO, Elhazmi MAF, Aljasser SJ, Sulimani RA, Jayakumar RV, Alnuaim AA, Mekki MO (1992) A comparison of acute glycemic and insulin-response to dates (Phoenix-dactylifera) and oral dextrose in diabetic and nondiabetic subjects. Saudi Med J 13(5):397–402Google Scholar
  32. Fullerton SA, Samadi AA, Tortorelis DG, Choudhury MS, Mallouh C, Tazaki H, Konno S (2000) Induction of apoptosis in human prostatic cancer cells with betaglucan (Maitake mushroom polysaccharide). Mol Urol 4:7–13PubMedGoogle Scholar
  33. Gardner E (2017) Alternative sugars: dates. Br Dent J 223(6):393.  https://doi.org/10.1038/sj.bdj.2017.792 CrossRefGoogle Scholar
  34. Ghnimi S, Umer S, Karim K-EA (2017) Date fruit (Phoenix dactylifera L.): an underutilized food seeking industrial valorization. NFS J 6:1–10.  https://doi.org/10.1016/j.nfs.2016.12.001 CrossRefGoogle Scholar
  35. Habib HM, Ibrahim WH (2011) Nutritional quality evaluation of eighteen date fruit varieties. Int J Food Sci Nutr 60(S1):99–111.  https://doi.org/10.1080/09637480802314639 CrossRefGoogle Scholar
  36. Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (Tannins) as biological antioxidants. J Agric Food Chem 46(5):1887–1892.  https://doi.org/10.1021/jf970975b CrossRefPubMedGoogle Scholar
  37. Hong YJ, Tomas-Barberan FA, Kader AA, Mitchell AE (2006) The flavonoid glycosides and procyanidin composition of Deglet Nour dates (Phoenix dactylifera). J Agric Food Chem 54:2405–2411.  https://doi.org/10.1021/jf0581776 CrossRefPubMedGoogle Scholar
  38. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856.  https://doi.org/10.1021/jf030723c CrossRefPubMedGoogle Scholar
  39. Ipatova OM, Prozorovskaia NN, Rusina IF, Prozorovskii VN (2003) Antioxidant properties of a leaf extract from Aronia (Aronia melanocarba) containing proanthocyanidins. Biomed Khim 49:165–176PubMedGoogle Scholar
  40. Ishurd O, Kennedy JF (2005) The anti-cancer activity of polysaccharide prepared from Libyan dates (Phoenix dactylifera L.). Carbohydr Polym 59(4):531–535.  https://doi.org/10.1016/j.carbpol.2004.11.004 CrossRefGoogle Scholar
  41. Ishurd O, Zgheel F, Kermagi A, Flefla M, Elmabruk M (2004) Antitumor activity of beta D glucan from Libyan dates. J Med Food 7(2):252–255.  https://doi.org/10.1089/1096620041224085 CrossRefPubMedGoogle Scholar
  42. Ishurd O, Zgheela F, Kermagia A, Flefleaa N, Elmabruka M, Kennedy JF, Ashour A (2007) (1–3)-β D-glucans from Lybian dates (Phoenix dactylifera L.) and their anticancer activities. J Biol Sci 7(3):554–557.  https://doi.org/10.3923/jbs.2007.554.557 CrossRefGoogle Scholar
  43. Ismail B, Haffar I, Baalbaki R, Mechref Y, Henry J (2006) Physico-chemical characteristics and total quality of five date varieties grown in the United Arab Emirates. Int J Food Sci Technol 41:919–926.  https://doi.org/10.1111/j.1365-2621.2005.01143.x CrossRefGoogle Scholar
  44. Jana K, Samanta PK, Manna I, Ghosh P, Singh N, Khetan RP, Ray BR (2008) Protective effect of sodium selenite and zinc sulfate on intensive swimming-induced testicular gamatogenic and steroidogenic disorders in mature male rats. Appl Physiol Nutr Metab 33:903–914.  https://doi.org/10.1139/H08-065 CrossRefPubMedGoogle Scholar
  45. Janbaz KH, Saeed SA, Gilani AH (2005) Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine 11:424–430.  https://doi.org/10.1016/j.phymed.2003.05.002 CrossRefGoogle Scholar
  46. Jenkins DJ, Kendall CW, McKeown-Eyssen G (2008) Effect of a low-glycemic index or a high cereal fiber diet on type 2 diabetes: a randomized trial. JAMA 300:2742–2753.  https://doi.org/10.1001/jama.2008.808 CrossRefPubMedGoogle Scholar
  47. John S, Sorokin AV, Thompson PD (2007) Phytosterols and vascular disease. Curr Opin Lipidol 18:35–40.  https://doi.org/10.1097/MOL.0b013e328011e9e3 CrossRefPubMedGoogle Scholar
  48. Karasawa K, Uzuhashi Y, Hirota M, Otani H (2011) A matured fruit extract of date palm tree (Phoenix dactylifera L.) stimulates the cellular immune system in mice. J Agric Food Chem 59:11287–11293.  https://doi.org/10.1021/jf2029225 CrossRefPubMedGoogle Scholar
  49. Lemine FMM, Ahmed MVOM, Maoulainine LBM, Bouna ZAO, Samb A, Boukhary AOMSO (2014) Antioxidant activity of various Mauritanian date palm (Phoenix dactylifera L.) fruits at two edible ripening stages. Food Sci Nutr 2(6):700–705.  https://doi.org/10.1002/fsn3.167 CrossRefGoogle Scholar
  50. Liolios CC, Sotiroudis GT, Chinou I (2009) Fatty acids, sterols, phenols and antioxidant activity of Phoenix theophrasti fruits growing in Crete, Greece. Plant Foods Hum Nutr 64(1):52–61.  https://doi.org/10.1007/s11130-008-0100-1 CrossRefPubMedGoogle Scholar
  51. Lusis AJ (2002) Atherosclerosis. Nature 14:233–241.  https://doi.org/10.1038/35025203 CrossRefGoogle Scholar
  52. Mansouri A, Embarek G, Kokkalou E, Kefalas P (2005) Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem 89:411–420.  https://doi.org/10.1016/j.foodchem.2004.02.051 CrossRefGoogle Scholar
  53. Marlett JA, McBurney MI, Slavin JL (2002) Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc 102:993–1000.  https://doi.org/10.1016/j.jada.2008.08.007 CrossRefPubMedGoogle Scholar
  54. Marzouk HA, Kassem HA (2011) Improving fruit quality, nutritional value and yield of Zaghloul dates by the application of organic and/or fertilizers. Sci Hortic 127:249–254.  https://doi.org/10.1016/j.scienta.2010.10.005 CrossRefGoogle Scholar
  55. Miller NJ, Rice-Evans CA (1997) Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Radic Res 26(3):195–199.  https://doi.org/10.3109/10715769709097799 CrossRefPubMedGoogle Scholar
  56. Mohammad B, Habibi N (2011) Date seeds: a novel and inexpensive source of dietary fiber. In: International conference on food engineering and biotechnology, vol 9, pp 323–326Google Scholar
  57. Neori BH, Judeinstein SA, Greenberg N, Volkova M, Rosenblat M, Aviram M (2013) Date (Phoenix dactylifera L.) fruit soluble phenolics composition and antiatherogenic properties in nine israeli varieties. J Agric Food Chem 61(18):4278–4286.  https://doi.org/10.1021/jf400782v CrossRefGoogle Scholar
  58. Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49(10):4619–4626.  https://doi.org/10.1021/jf010586o CrossRefPubMedGoogle Scholar
  59. Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27(11–12):1173–1181.  https://doi.org/10.1016/S0891-5849(99)00203-8 CrossRefPubMedGoogle Scholar
  60. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302.  https://doi.org/10.1021/jf0502698 CrossRefPubMedGoogle Scholar
  61. Ranilla LG, Kwon YI, Genovese MI, Lajolo FM, Shetty K (2008) Antidiabetes and antihypertension potential of commonly consumed carbohydrate sweeteners using in vitro models. J Med Food 11(2):337–348.  https://doi.org/10.1089/jmf.2007.689 CrossRefPubMedGoogle Scholar
  62. Rock W, Rosenblat M, Borochov-Neori H, Volkova N, Judeinstein S, Elias M, Aviram M (2009) Effects of date (Phoenix dactylifera L., Medjool or Hallawi variety) consumption by healthy subjects on serum glucose and lipid levels and on serum oxidative status: a pilot study. J Agric Food Chem 57:8010–8017.  https://doi.org/10.1021/jf901559a CrossRefPubMedGoogle Scholar
  63. Saafi EB, Arem AE, Issaoui M, Hammami M, Achour L (2009) Phenolic content and antioxidant activity of four date palm (Phoenix dactylifera L.) fruit varieties grown in Tunisia. Int J Food Sci Technol 44:2314–2319.  https://doi.org/10.1111/j.1365-2621.2009.02075.x CrossRefGoogle Scholar
  64. Said L, Banni M, Kerkeni A, Said K, Messaoudi I (2010) Influence of combined treatment with zinc and selenium on cadmium induced testicular pathophysiology in rat. Food Chem Toxicol 48:2759–2765.  https://doi.org/10.1016/j.fct.2010.07.003 CrossRefPubMedGoogle Scholar
  65. Saleh EA, Tawfik MS, Abu-Tarboush HM (2011) Phenolic contents and antioxidant activity of various date palm (Phoenix dactylifera L.) fruits from Saudi Arabia. Food Nutr Sci 2(10):1134–1141.  https://doi.org/10.4236/fns.2011.210152 CrossRefGoogle Scholar
  66. Shafiei M, Karimi K, Taherzadeh MJ (2010) Palm date fibers: analysis and enzymatic hydrolysis. Int J Mol Sci 11:4285–4296.  https://doi.org/10.3390/ijms11114285 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Shimamura T, Sumikura Y, Yamazaki T, Tada A, Kashiwagi T, Ishikawa H, Matsui T, Sugimoto N, Akiyama K, Ukeda H (2014) Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives – inter-laboratory evaluation study. Anal Sci 30(7):717–721.  https://doi.org/10.2116/analsci.30.717 CrossRefPubMedGoogle Scholar
  68. Singh V, Guizani N, Essa MM, Hakkim FL, Rahman MS (2012) Comparative analysis of total phenolics, flavonoid content and antioxidant profile of different date varieties (Phoenix dactylifera L.) from Sultanate of Oman. Int Food Res J 19(3):1063–1070Google Scholar
  69. Srinivasan M, Rukkumani R, Ram Sudheer A, Menon VP (2005) Ferulic acid, a natural protector against carbon tetrachloride-induced toxicity. Fundam Clin Pharmacol 19:491–496.  https://doi.org/10.1111/j.1472-8206.2005.00332.x CrossRefPubMedGoogle Scholar
  70. Stasko A, Brezova V, Biskupic S, Misi KV (2007) The potential pitfalls of using 1,1-diphenyl-2-picrylhydrazyl to characterize antioxidants in mixed water solvents. Free Radic Res 41(4):379–390.  https://doi.org/10.1080/10715760600930014 CrossRefPubMedGoogle Scholar
  71. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10):768–780.  https://doi.org/10.1038/nrc1189 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Thompson LU, Boucher BA, Liu Z, Cotterchio M, Kreiger N (2006) Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer 54:184–201.  https://doi.org/10.1207/s15327914nc5402_5 CrossRefPubMedGoogle Scholar
  73. Tomas Lorente F, Ferreres F (1988) Flavonoid sulphates in fruits of Phoenix dactilifera. J Agrochem Food Technol 28(4):581–585Google Scholar
  74. Uba A, Abdullahi MI, Yusuf AJ, Ibrahim ZYY, Lawal M, Nasir I, Abdullahim FT (2015) Mineral profile, proximate and amino acid composition of three dates varieties (Phoenix dactylifera L.). Der Pharma Chemica 7(5):48–53Google Scholar
  75. Vayalil PK (2002) Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae). J Agric Food Chem 30 50(3):610–617.  https://doi.org/10.1080/10715760600930014 CrossRefGoogle Scholar
  76. Vayalil PK (2012) Date fruits (Phoenix dactylifera Linn): an emerging medicinal food. Crit Rev Food Sci Nutr 52(3):249–271.  https://doi.org/10.1080/10408398.2010.499824 CrossRefPubMedGoogle Scholar
  77. Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44:701–705.  https://doi.org/10.1021/jf950579y CrossRefGoogle Scholar
  78. Wang Z, Wu Z, Dai Y, Yang J, Wang W, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. AminoAcids 45(3):463–477.  https://doi.org/10.1007/s00726-013-1493-1 CrossRefGoogle Scholar
  79. Weickert MO, Pfeiffer AFH (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138(3):439–442.  https://doi.org/10.1093/jn/138.3.439 CrossRefPubMedGoogle Scholar
  80. Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37.  https://doi.org/10.3945/an.110.1008 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zheng QS, Sun XL, Xu B, Li G, Song M (2005) Mechanisms of apigenin-7-glucoside as a hepatoprotective agent. Biomed Environ Sci 18:65–70PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. M. Gnanamangai
    • 1
    Email author
  • S. Saranya
    • 1
  • P. Ponmurugan
    • 2
  • S. Kavitha
    • 1
  • Sudhagar Pitchaimuthu
    • 3
  • P. Divya
    • 1
  1. 1.Department of BiotechnologyK. S. Rangasamy College of TechnologyTiruchengodeIndia
  2. 2.Department of BotanyBharathiar UniversityCoimbatoreIndia
  3. 3.Multi-functional Photocatalyst & Coatings Group, SPECIFIC, College of EngineeringSwansea University (Bay Campus)SwanseaUK

Personalised recommendations