Nonpituitary Sellar Masses and Infiltrative Disorders

  • Shilpa Mehta
  • Benjamin Cohen
  • Brenda Kohn
Part of the Contemporary Endocrinology book series (COE)


Supra- and intrasellar tumors constitute 10% of all pediatric CNS tumors and may cause endocrine dysfunction due to their close proximity to the hypothalamic-pituitary axis. Endocrine dysfunction may exist at presentation or can occur after surgical intervention or evolve subsequently during or after completion of chemotherapy or radiotherapy. Apart from pituitary adenomas, which comprise approximately 90% of all sellar tumors, there are tumors or tumor-mimicking lesions of non-pituitary origin occurring in the suprasellar region. These non-pituitary sellar masses can be developmental in origin, inflammatory, immunologic or vascular in nature and are further categorized as benign or malignant. In this chapter, we discuss the clinical and neuroradiologic presentation of non-pituitary supra- and intrasellar tumors that occur in the pediatric population, along with the histologic and molecular characterization of these tumors.


Pediatric central nervous tumors Nonpituitary sellar mass Suprasellar tumors Intrasellar tumors Benign sellar masses Malignant sellar masses 


  1. 1.
    Wells EM, Packer RJ. Pediatric brain tumors. Continuum (Minneap Minn). 2015;21(2 Neuro-oncology):373–96.Google Scholar
  2. 2.
    Ostrom QT, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 2015;17(Suppl 4):iv1–iv62.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ostrom QT, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol. 2017;19(suppl_5):v1–v88.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.PubMedGoogle Scholar
  5. 5.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.PubMedGoogle Scholar
  6. 6.
    Arora RS, et al. Age-incidence patterns of primary CNS tumors in children, adolescents, and adults in England. Neuro-Oncology. 2009;11(4):403–13.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Schroeder JW, Vezina LG. Pediatric sellar and suprasellar lesions. Pediatr Radiol. 2011;41(3):287–98; quiz 404–5.PubMedGoogle Scholar
  8. 8.
    Surawicz TS, et al. Descriptive epidemiology of primary brain and CNS tumors: results from the central brain tumor registry of the United States, 1990–1994. Neuro-Oncology. 1999;1(1):14–25.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Seeburg DP, Dremmen MH, Huisman TA. Imaging of the sella and parasellar region in the pediatric population. Neuroimaging Clin N Am. 2017;27(1):99–121.PubMedGoogle Scholar
  10. 10.
    Huang BY, Castillo M. Nonadenomatous tumors of the pituitary and sella turcica. Top Magn Reson Imaging. 2005;16(4):289–99.PubMedGoogle Scholar
  11. 11.
    Freda PU, Wardlaw SL, Post KD. Unusual causes of sellar/parasellar masses in a large transsphenoidal surgical series. J Clin Endocrinol Metab. 1996;81(10):3455–9.PubMedGoogle Scholar
  12. 12.
    Valassi E, et al. Clinical features of nonpituitary sellar lesions in a large surgical series. Clin Endocrinol. 2010;73(6):798–807.Google Scholar
  13. 13.
    McCrea HJ, et al. Pediatric suprasellar tumors. J Child Neurol. 2016;31(12):1367–76.PubMedGoogle Scholar
  14. 14.
    Wilne S, et al. Presentation of childhood CNS tumours: a systematic review and meta-analysis. Lancet Oncol. 2007;8(8):685–95.PubMedGoogle Scholar
  15. 15.
    Wilne SH, et al. The presenting features of brain tumours: a review of 200 cases. Arch Dis Child. 2006;91(6):502–6.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Wilne S, et al. Progression from first symptom to diagnosis in childhood brain tumours. Eur J Pediatr. 2012;171(1):87–93.PubMedGoogle Scholar
  17. 17.
    Shin JL, et al. Cystic lesions of the pituitary: clinicopathological features distinguishing craniopharyngioma, Rathke's cleft cyst, and arachnoid cyst. J Clin Endocrinol Metab. 1999;84(11):3972–82.PubMedGoogle Scholar
  18. 18.
    Nishioka H, et al. Magnetic resonance imaging, clinical manifestations, and management of Rathke's cleft cyst. Clin Endocrinol. 2006;64(2):184–8.Google Scholar
  19. 19.
    Karavitaki N, et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol. 2005;62(4):397–409.Google Scholar
  20. 20.
    Gan HW, Bulwer C, Spoudeas H. Pituitary and hypothalamic tumor syndromes in childhood. In: De Groot LJ, et al., editors. Endotext. South Dartmouth, MA:, Inc; 2000.Google Scholar
  21. 21.
    Merchant TE, et al. Craniopharyngioma: the St. Jude Children’s research hospital experience 1984–2001. Int J Radiat Oncol Biol Phys. 2002;53(3):533–42.PubMedGoogle Scholar
  22. 22.
    Muller HL. Childhood craniopharyngioma--current concepts in diagnosis, therapy and follow-up. Nat Rev Endocrinol. 2010;6(11):609–18.PubMedGoogle Scholar
  23. 23.
    Taylor M, et al. Hypothalamic-pituitary lesions in pediatric patients: endocrine symptoms often precede neuro-ophthalmic presenting symptoms. J Pediatr. 2012;161(5):855–63.PubMedGoogle Scholar
  24. 24.
    Rivarola MA, et al. Precocious puberty in children with tumours of the suprasellar and pineal areas: organic central precocious puberty. Acta Paediatr. 2001;90(7):751–6.PubMedGoogle Scholar
  25. 25.
    Daubenbuchel AM, Muller HL. Neuroendocrine disorders in pediatric craniopharyngioma patients. J Clin Med. 2015;4(3):389–413.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Gan HW, et al. Neuroendocrine morbidity after pediatric optic gliomas: a longitudinal analysis of 166 children over 30 years. J Clin Endocrinol Metab. 2015;100(10):3787–99.PubMedGoogle Scholar
  27. 27.
    Eguchi K, et al. Pituitary function in patients with Rathke’s cleft cyst: significance of surgical management. Endocr J. 1994;41(5):535–40.PubMedGoogle Scholar
  28. 28.
    Deopujari CE, et al. Pediatric suprasellar lesions. J Pediatr Neurosci. 2011;6(Suppl 1):S46–55.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kilday JP, et al. Diabetes insipidus in pediatric germinomas of the suprasellar region: characteristic features and significance of the pituitary bright spot. J Neuro-Oncol. 2015;121(1):167–75.Google Scholar
  30. 30.
    Jorsal T, Rorth M. Intracranial germ cell tumours. A review with special reference to endocrine manifestations. Acta Oncol. 2012;51(1):3–9.PubMedGoogle Scholar
  31. 31.
    Nielsen EH, et al. Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J Neuro-Oncol. 2011;104(3):755–63.Google Scholar
  32. 32.
    Muller HL. Childhood craniopharyngioma. Pituitary. 2013;16(1):56–67.PubMedGoogle Scholar
  33. 33.
    Muller HL. Craniopharyngioma. Handb Clin Neurol. 2014;124:235–53.PubMedGoogle Scholar
  34. 34.
    Warmuth-Metz M, et al. Differential diagnosis of suprasellar tumors in children. Klin Padiatr. 2004;216(6):323–30.PubMedGoogle Scholar
  35. 35.
    Muller HL. Craniopharyngioma – a childhood and adult disease with challenging characteristics. Front Endocrinol (Lausanne). 2012;3:80.Google Scholar
  36. 36.
    Muller HL. Craniopharyngioma. Endocr Rev. 2014;35(3):513–43.PubMedGoogle Scholar
  37. 37.
    Caldarelli M, et al. Long-term results of the surgical treatment of craniopharyngioma: the experience at the policlinico gemelli, Catholic University, Rome. Childs Nerv Syst. 2005;21(8–9):747–57.PubMedGoogle Scholar
  38. 38.
    Hoffman HJ, et al. Aggressive surgical management of craniopharyngiomas in children. J Neurosurg. 1992;76(1):47–52.PubMedGoogle Scholar
  39. 39.
    Elliott RE, Wisoff JH. Surgical management of giant pediatric craniopharyngiomas. J Neurosurg Pediatr. 2010;6(5):403–16.PubMedGoogle Scholar
  40. 40.
    Barker FG 2nd, et al. Introduction: craniopharyngioma: current and emerging treatment modalities. Neurosurg Focus. 2016;41(6):E1.PubMedGoogle Scholar
  41. 41.
    Board PDQPTE. Childhood craniopharyngioma treatment (PDQ(R)): health professional version. In:PDQ cancer information summaries. Bethesda, MD: National Cancer Institute (US); 2002.Google Scholar
  42. 42.
    Czyzyk E, et al. Optic pathway gliomas in children with and without neurofibromatosis 1. J Child Neurol. 2003;18(7):471–8.PubMedGoogle Scholar
  43. 43.
    Louis DN, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Rashidi M, et al. Nonmalignant pediatric brain tumors. Curr Neurol Neurosci Rep. 2003;3(3):200–5.PubMedGoogle Scholar
  45. 45.
    Armstrong GT, et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro-Oncology. 2011;13(2):223–34.PubMedGoogle Scholar
  46. 46.
    Robert-Boire V, et al. Clinical presentation and outcome of patients with optic pathway glioma. Pediatr Neurol. 2017;75:55–60.PubMedGoogle Scholar
  47. 47.
    Hersh JH. Health supervision for children with neurofibromatosis. Pediatrics. 2008;121(3):633–42.PubMedGoogle Scholar
  48. 48.
    Gutmann DH, et al. Gliomas presenting after age 10 in individuals with neurofibromatosis type 1 (NF1). Neurology. 2002;59(5):759–61.PubMedGoogle Scholar
  49. 49.
    Listernick R, et al. Optic pathway tumors in children: the effect of neurofibromatosis type 1 on clinical manifestations and natural history. J Pediatr. 1995;127(5):718–22.PubMedGoogle Scholar
  50. 50.
    Singhal S, et al. Neurofibromatosis type 1 and sporadic optic gliomas. Arch Dis Child. 2002;87(1):65–70.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Listernick R, et al. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J Pediatr. 1994;125(1):63–6.PubMedGoogle Scholar
  52. 52.
    Hamideh D, et al. Isolated optic nerve glioma in children with and without neurofibromatosis: retrospective characterization and analysis of outcomes. J Child Neurol. 2018;33(6):375–82.PubMedGoogle Scholar
  53. 53.
    Nicolin G, et al. Natural history and outcome of optic pathway gliomas in children. Pediatr Blood Cancer. 2009;53(7):1231–7.PubMedGoogle Scholar
  54. 54.
    Prada CE, et al. The use of magnetic resonance imaging screening for optic pathway gliomas in children with neurofibromatosis type 1. J Pediatr. 2015;167(4):851–856.e1.PubMedGoogle Scholar
  55. 55.
    Allen JC. Initial management of children with hypothalamic and thalamic tumors and the modifying role of neurofibromatosis-1. Pediatr Neurosurg. 2000;32(3):154–62.PubMedGoogle Scholar
  56. 56.
    Brauner R, et al. Growth and endocrine disorders in optic glioma. Eur J Pediatr. 1990;149(12):825–8.PubMedGoogle Scholar
  57. 57.
    Astrup J. Natural history and clinical management of optic pathway glioma. Br J Neurosurg. 2003;17(4):327–35.PubMedGoogle Scholar
  58. 58.
    Listernick R, et al. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007;61(3):189–98.PubMedGoogle Scholar
  59. 59.
    Kornreich L, et al. Optic pathway glioma: correlation of imaging findings with the presence of neurofibromatosis. AJNR Am J Neuroradiol. 2001;22(10):1963–9.PubMedGoogle Scholar
  60. 60.
    Balcer LJ, et al. Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas: relation to tumor location by magnetic resonance imaging. Am J Ophthalmol. 2001;131(4):442–5.PubMedGoogle Scholar
  61. 61.
    Rasool N, Odel JG, Kazim M. Optic pathway glioma of childhood. Curr Opin Ophthalmol. 2017;28(3):289–95.PubMedGoogle Scholar
  62. 62.
    Pruzan NL, et al. Spontaneous regression of a massive sporadic chiasmal optic pathway glioma. J Child Neurol. 2015;30(9):1196–8.PubMedGoogle Scholar
  63. 63.
    Campen CJ, Gutmann DH. Optic pathway gliomas in neurofibromatosis type 1. J Child Neurol. 2018;33(1):73–81.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Wan MJ, et al. Long-term visual outcomes of optic pathway gliomas in pediatric patients without neurofibromatosis type 1. J Neuro-Oncol. 2016;129(1):173–8.Google Scholar
  65. 65.
    Sani I, Albanese A. Endocrine long-term follow-up of children with neurofibromatosis type 1 and optic pathway glioma. Horm Res Paediatr. 2017;87(3):179–88.PubMedGoogle Scholar
  66. 66.
    Listernick R, et al. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol. 1997;41(2):143–9.PubMedGoogle Scholar
  67. 67.
    King A, et al. Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. Am J Med Genet A. 2003;122a(2):95–9.PubMedGoogle Scholar
  68. 68.
    Trevisson E, et al. Natural history of optic pathway gliomas in a cohort of unselected patients affected by Neurofibromatosis 1. J Neuro-Oncol. 2017;134(2):279–87.Google Scholar
  69. 69.
    Yildiz AE, Oguz KK, Fitoz S. Suprasellar masses in children: characteristic MR imaging features. J Neuroradiol. 2016;43(4):246–59.PubMedGoogle Scholar
  70. 70.
    Shapey J, Danesh-Meyer HV, Kaye AH. Diagnosis and management of optic nerve glioma. J Clin Neurosci. 2011;18(12):1585–91.PubMedGoogle Scholar
  71. 71.
    Lee AG. Neuroophthalmological management of optic pathway gliomas. Neurosurg Focus. 2007;23(5):E1.PubMedGoogle Scholar
  72. 72.
    Avery RA, Fisher MJ, Liu GT. Optic pathway gliomas. J Neuroophthalmol. 2011;31(3):269–78.PubMedGoogle Scholar
  73. 73.
    Dasgupta B, et al. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 2005;65(7):2755–60.PubMedGoogle Scholar
  74. 74.
    Gutmann DH, et al. Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Neurobiol. 2000;26(4):361–7.PubMedGoogle Scholar
  75. 75.
    Khatua S, Gutmann DH, Packer RJ. Neurofibromatosis type 1 and optic pathway glioma: molecular interplay and therapeutic insights. Pediatr Blood Cancer. 2018;65(3):e26838.Google Scholar
  76. 76.
    Jones DT, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Jacob K, et al. Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin Cancer Res. 2011;17(14):4650–60.PubMedGoogle Scholar
  78. 78.
    Maixner W. Hypothalamic hamartomas--clinical, neuropathological and surgical aspects. Childs Nerv Syst. 2006;22(8):867–73.PubMedGoogle Scholar
  79. 79.
    Debeneix C, et al. Hypothalamic hamartoma: comparison of clinical presentation and magnetic resonance images. Horm Res. 2001;56(1–2):12–8.PubMedGoogle Scholar
  80. 80.
    Weissenberger AA, et al. Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J Am Acad Child Adolesc Psychiatry. 2001;40(6):696–703.PubMedGoogle Scholar
  81. 81.
    Harrison VS, Oatman O, Kerrigan JF. Hypothalamic hamartoma with epilepsy: Review of endocrine comorbidity. Epilepsia. 2017;58(Suppl 2):50–9.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Chemaitilly W, et al. Central precocious puberty: clinical and laboratory features. Clin Endocrinol. 2001;54(3):289–94.Google Scholar
  83. 83.
    Pescovitz OH, et al. The NIH experience with precocious puberty: diagnostic subgroups and response to short-term luteinizing hormone releasing hormone analogue therapy. J Pediatr. 1986;108(1):47–54.PubMedGoogle Scholar
  84. 84.
    Judge DM, et al. Hypothalamic hamartoma: a source of luteinizing-hormone-releasing factor in precocious puberty. N Engl J Med. 1977;296(1):7–10.PubMedGoogle Scholar
  85. 85.
    Mittal S, et al. Hypothalamic hamartomas. Part 1. Clinical, neuroimaging, and neurophysiological characteristics. Neurosurg Focus. 2013;34(6):E6.PubMedGoogle Scholar
  86. 86.
    Jung H, et al. Association of morphological characteristics with precocious puberty and/or gelastic seizures in hypothalamic hamartoma. J Clin Endocrinol Metab. 2003;88(10):4590–5.PubMedGoogle Scholar
  87. 87.
    Ng YT, et al. Transcallosal resection of hypothalamic hamartoma for intractable epilepsy. Epilepsia. 2006;47(7):1192–202.PubMedGoogle Scholar
  88. 88.
    Ng YT, et al. Endoscopic resection of hypothalamic hamartomas for refractory symptomatic epilepsy. Neurology. 2008;70(17):1543–8.PubMedGoogle Scholar
  89. 89.
    Abla AA, et al. Gamma Knife surgery for hypothalamic hamartomas and epilepsy: patient selection and outcomes. J Neurosurg. 2010;113(Suppl):207–14.PubMedGoogle Scholar
  90. 90.
    Abla AA, et al. Orbitozygomatic resection for hypothalamic hamartoma and epilepsy: patient selection and outcome. Childs Nerv Syst. 2011;27(2):265–77.PubMedGoogle Scholar
  91. 91.
    Drees C, et al. Seizure outcome and complications following hypothalamic hamartoma treatment in adults: endoscopic, open, and gamma knife procedures. J Neurosurg. 2012;117(2):255–61.PubMedGoogle Scholar
  92. 92.
    Li CD, et al. Surgical treatment of hypothalamic hamartoma causing central precocious puberty: long-term follow-up. J Neurosurg Pediatr. 2013;12(2):151–4.PubMedGoogle Scholar
  93. 93.
    Ng YT, et al. Successful resection of a hypothalamic hamartoma and a Rathke cleft cyst. Case report. J Neurosurg. 2005;102(1 Suppl):78–80.PubMedGoogle Scholar
  94. 94.
    Graham JM Jr, et al. A cluster of pallister-hall syndrome cases, (congenital hypothalamic hamartoblastoma syndrome). Am J Med Genet Suppl. 1986;2:53–63.PubMedGoogle Scholar
  95. 95.
    Freeman JL, et al. The endocrinology of hypothalamic hamartoma surgery for intractable epilepsy. Epileptic Disord. 2003;5(4):239–47.PubMedGoogle Scholar
  96. 96.
    Alter CA, Bilaniuk LT. Utility of magnetic resonance imaging in the evaluation of the child with central diabetes insipidus. J Pediatr Endocrinol Metab. 2002;15(Suppl 2):681–7.PubMedGoogle Scholar
  97. 97.
    Mootha SL, et al. Idiopathic hypothalamic diabetes insipidus, pituitary stalk thickening, and the occult intracranial germinoma in children and adolescents. J Clin Endocrinol Metab. 1997;82(5):1362–7.PubMedGoogle Scholar
  98. 98.
    Marchand I, et al. Central diabetes insipidus as the inaugural manifestation of Langerhans cell histiocytosis: natural history and medical evaluation of 26 children and adolescents. J Clin Endocrinol Metab. 2011;96(9):E1352–60.PubMedGoogle Scholar
  99. 99.
    Saito T, et al. Chronic hypernatremia associated with inflammation of the neurohypophysis. J Clin Endocrinol Metab. 1970;31(4):391–6.PubMedGoogle Scholar
  100. 100.
    Robison NJ, et al. Predictors of neoplastic disease in children with isolated pituitary stalk thickening. Pediatr Blood Cancer. 2013;60(10):1630–5.PubMedGoogle Scholar
  101. 101.
    Raybaud C, Barkovich AJ. Intracranial, orbital, and neck masses of childhood. In: Barkovich AJ, Raybaud C, editors. Pediatric neuroimaging. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.Google Scholar
  102. 102.
    Echevarria ME, Fangusaro J, Goldman S. Pediatric central nervous system germ cell tumors: a review. Oncologist. 2008;13(6):690–9.PubMedGoogle Scholar
  103. 103.
    Phi JH, et al. The enigma of bifocal germ cell tumors in the suprasellar and pineal regions: synchronous lesions or metastasis? J Neurosurg Pediatr. 2013;11(2):107–14.PubMedGoogle Scholar
  104. 104.
    Board PDQPTE. Childhood central nervous system germ cell tumors treatment (PDQ(R)): health professional version. In:PDQ cancer information summaries. Bethesda, MD: National Cancer Institute (US); 2002.Google Scholar
  105. 105.
    Goodwin TL, Sainani K, Fisher PG. Incidence patterns of central nervous system germ cell tumors: a SEER Study. J Pediatr Hematol Oncol. 2009;31(8):541–4.PubMedGoogle Scholar
  106. 106.
    Villano JL, et al. Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries. Neuro-Oncology. 2008;10(2):121–30.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Jenkin RD, Simpson WJ, Keen CW. Pineal and suprasellar germinomas. Results of radiation treatment. J Neurosurg. 1978;48(1):99–107.PubMedGoogle Scholar
  108. 108.
    Matsutani M, et al. Primary intracranial germ cell tumors: a clinical analysis of 153 histologically verified cases. J Neurosurg. 1997;86(3):446–55.PubMedGoogle Scholar
  109. 109.
    Jennings MT, Gelman R, Hochberg F. Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg. 1985;63(2):155–67.PubMedGoogle Scholar
  110. 110.
    Brandes AA, Pasetto LM, Monfardini S. The treatment of cranial germ cell tumours. Cancer Treat Rev. 2000;26(4):233–42.PubMedGoogle Scholar
  111. 111.
    Sklar CA, et al. Hormonal and metabolic abnormalities associated with central nervous system germinoma in children and adolescents and the effect of therapy: report of 10 patients. J Clin Endocrinol Metab. 1981;52(1):9–16.PubMedGoogle Scholar
  112. 112.
    Ono N, et al. A comparison of children with suprasellar germ cell tumors and craniopharyngiomas: final height, weight, endocrine, and visual sequelae after treatment. Surg Neurol. 1996;46(4):370–7.PubMedGoogle Scholar
  113. 113.
    Vuillermet P, et al. Simultaneous suprasellar and pineal germ cell tumors in five late stage adolescents: endocrinological studies and prolonged follow-up. J Pediatr Endocrinol Metab. 2008;21(12):1169–78.PubMedGoogle Scholar
  114. 114.
    Reddy AT, et al. Refining the staging evaluation of pineal region germinoma using neuroendoscopy and the presence of preoperative diabetes insipidus. Neuro-Oncology. 2004;6(2):127–33.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Ramelli GP, et al. Suprasellar germinomas in childhood and adolescence: diagnostic pitfalls. J Pediatr Endocrinol Metab. 1998;11(6):693–7.PubMedGoogle Scholar
  116. 116.
    Fujimaki T. Central nervous system germ cell tumors: classification, clinical features, and treatment with a historical overview. J Child Neurol. 2009;24(11):1439–45.PubMedGoogle Scholar
  117. 117.
    Ono N, et al. Suprasellar germinomas; relationship between tumour size and diabetes insipidus. Acta Neurochir. 1992;114(1–2):26–32.PubMedGoogle Scholar
  118. 118.
    Allen J, et al. Diagnostic sensitivity of serum and lumbar CSF bHCG in newly diagnosed CNS germinoma. Pediatr Blood Cancer. 2012;59(7):1180–2.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Osorio DS, Allen JC. Management of CNS germinoma. CNS Oncol. 2015;4(4):273–9.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Packer RJ, Cohen BH, Cooney K. Intracranial germ cell tumors. Oncologist. 2000;5(4):312–20.PubMedGoogle Scholar
  121. 121.
    Maity A, et al. Craniospinal radiation in the treatment of biopsy-proven intracranial germinomas: twenty-five years' experience in a single center. Int J Radiat Oncol Biol Phys. 2004;58(4):1165–70.PubMedGoogle Scholar
  122. 122.
    Kawabata Y, et al. Long term outcomes in patients with intracranial germinomas: a single institution experience of irradiation with or without chemotherapy. J Neuro-Oncol. 2008;88(2):161–7.Google Scholar
  123. 123.
    Sawamura Y, et al. Germ cell tumours of the central nervous system: treatment consideration based on 111 cases and their long-term clinical outcomes. Eur J Cancer. 1998;34(1):104–10.PubMedGoogle Scholar
  124. 124.
    Robertson PL, DaRosso RC, Allen JC. Improved prognosis of intracranial non-germinoma germ cell tumors with multimodality therapy. J Neuro-Oncol. 1997;32(1):71–80.Google Scholar
  125. 125.
    Calaminus G, et al. AFP/beta-HCG secreting CNS germ cell tumors: long-term outcome with respect to initial symptoms and primary tumor resection. Results of the cooperative trial MAKEI 89. Neuropediatrics. 2005;36(2):71–7.PubMedGoogle Scholar
  126. 126.
    Henter JI, Tondini C, Pritchard J. Histiocyte disorders. Crit Rev Oncol Hematol. 2004;50(2):157–74.PubMedGoogle Scholar
  127. 127.
    Grois N, et al. Central nervous system disease in Langerhans cell histiocytosis. J Pediatr. 2010;156(6):873–81, 881.e1.PubMedGoogle Scholar
  128. 128.
    Alston RD, et al. Incidence and survival of childhood Langerhans cell histiocytosis in Northwest England from 1954 to 1998. Pediatr Blood Cancer. 2007;48(5):555–60.PubMedGoogle Scholar
  129. 129.
    Guyot-Goubin A, et al. Descriptive epidemiology of childhood Langerhans cell histiocytosis in France, 2000–2004. Pediatr Blood Cancer. 2008;51(1):71–5.PubMedGoogle Scholar
  130. 130.
    Salotti JA, et al. Incidence and clinical features of Langerhans cell histiocytosis in the UK and Ireland. Arch Dis Child. 2009;94(5):376–80.PubMedGoogle Scholar
  131. 131.
    Stalemark H, et al. Incidence of Langerhans cell histiocytosis in children: a population-based study. Pediatr Blood Cancer. 2008;51(1):76–81.PubMedGoogle Scholar
  132. 132.
    Grois N, et al. Risk factors for diabetes insipidus in langerhans cell histiocytosis. Pediatr Blood Cancer. 2006;46(2):228–33.PubMedGoogle Scholar
  133. 133.
    Donadieu J, et al. Incidence of growth hormone deficiency in pediatric-onset Langerhans cell histiocytosis: efficacy and safety of growth hormone treatment. J Clin Endocrinol Metab. 2004;89(2):604–9.PubMedGoogle Scholar
  134. 134.
    Nanduri VR, et al. Growth and endocrine disorders in multisystem Langerhans’ cell histiocytosis. Clin Endocrinol. 2000;53(4):509–15.Google Scholar
  135. 135.
    Abla O, Egeler RM, Weitzman S. Langerhans cell histiocytosis: current concepts and treatments. Cancer Treat Rev. 2010;36(4):354–9.PubMedGoogle Scholar
  136. 136.
    Aquilina K, Boop FA. Nonneoplastic enlargement of the pituitary gland in children. J Neurosurg Pediatr. 2011;7(5):510–5.PubMedGoogle Scholar
  137. 137.
    Kocova M, et al. Diagnostic approach in children with unusual symptoms of acquired hypothyroidism. When to look for pituitary hyperplasia? J Pediatr Endocrinol Metab. 2016;29(3):297–303.PubMedGoogle Scholar
  138. 138.
    Satyarthee GD, Sharma BS. Repeated headache as presentation of pituitary apoplexy in the adolescent population: unusual entity with review of literature. J Neurosci Rural Pract. 2017;8(Suppl 1):S143–s146.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Chao CC, Lin CJ. Pituitary apoplexy in a teenager--case report. Pediatr Neurol. 2014;50(6):648–51.PubMedGoogle Scholar
  140. 140.
    Spampinato MV, Castillo M. Congenital pathology of the pituitary gland and parasellar region. Top Magn Reson Imaging. 2005;16(4):269–76.PubMedGoogle Scholar
  141. 141.
    Tominaga JY, Higano S, Takahashi S. Characteristics of Rathke’s cleft cyst in MR imaging. Magn Reson Med Sci. 2003;2(1):1–8.PubMedGoogle Scholar
  142. 142.
    Teramoto A, et al. Incidental pituitary lesions in 1000 unselected autopsy specimens. Radiology. 1994;193(1):161–4.PubMedGoogle Scholar
  143. 143.
    Han SJ, et al. Rathke’s cleft cysts: review of natural history and surgical outcomes. J Neuro-Oncol. 2014;117(2):197–203.Google Scholar
  144. 144.
    Evliyaoglu O, Evliyaoglu C, Ayva S. Rathke cleft cyst in seven-year-old girl presenting with central diabetes insipidus and review of literature. J Pediatr Endocrinol Metab. 2010;23(5):525–9.PubMedGoogle Scholar
  145. 145.
    Al-Holou WN, et al. Prevalence and natural history of arachnoid cysts in children. J Neurosurg Pediatr. 2010;5(6):578–85.PubMedGoogle Scholar
  146. 146.
    Rao G, et al. Expansion of arachnoid cysts in children: report of two cases and review of the literature. J Neurosurg. 2005;102(3 Suppl):314–7.PubMedGoogle Scholar
  147. 147.
    Pradilla G, Jallo G. Arachnoid cysts: case series and review of the literature. Neurosurg Focus. 2007;22(2):E7.PubMedGoogle Scholar
  148. 148.
    Guzel A, Trippel M, Ostertage CB. Suprasellar arachnoid cyst: a 20- year follow-up after stereotactic internal drainage: case report and review of the literature. Turk Neurosurg. 2007;17(3):211–8.PubMedGoogle Scholar
  149. 149.
    Invergo D, Tomita T. De novo suprasellar arachnoid cyst: case report and review of the literature. Pediatr Neurosurg. 2012;48(3):199–203.PubMedGoogle Scholar
  150. 150.
    Lee JY, et al. Long-term endocrine outcome of suprasellar arachnoid cysts. J Neurosurg Pediatr. 2017;19(6):696–702.PubMedGoogle Scholar
  151. 151.
    Caldarelli M, et al. Intracranial midline dermoid and epidermoid cysts in children. J Neurosurg. 2004;100(5 Suppl Pediatrics):473–80.PubMedGoogle Scholar
  152. 152.
    Amelot A, et al. Child dermoid cyst mimicking a craniopharyngioma: the benefit of MRI T2-weighted diffusion sequence. Childs Nerv Syst. 2018;34(2):359–62.Google Scholar
  153. 153.
    Zada G, Lopes MBS, Mukundan S, Laws E. Sellar region epidermoid and dermoid cysts. In: Zada G, Lopes M, Mukundan Jr S, Laws Jr E, editors. Atlas of sellar and parasellar lesions. Cham: Springer; 2016.Google Scholar
  154. 154.
    Gasparini S, et al. The journey of a floating fat: from suprasellar dermoid cyst to lateral ventricles. Neurol Sci. 2018;39(2):381–2.PubMedGoogle Scholar
  155. 155.
    Osborn AG, Preece MT. Intracranial cysts: radiologic-pathologic correlation and imaging approach. Radiology. 2006;239(3):650–64.PubMedGoogle Scholar
  156. 156.
    Kalra AA, Riel-Romero RM, Gonzalez-Toledo E. Lymphocytic hypophysitis in children: a novel presentation and literature review. J Child Neurol. 2011;26(1):87–94.PubMedGoogle Scholar
  157. 157.
    Gellner V, et al. Lymphocytic hypophysitis in the pediatric population. Childs Nerv Syst. 2008;24(7):785–92.PubMedGoogle Scholar
  158. 158.
    Molitch ME, Gillam MP. Lymphocytic hypophysitis. Horm Res. 2007;68(Suppl 5):145–50.PubMedGoogle Scholar
  159. 159.
    Caturegli P. Autoimmune hypophysitis: an underestimated disease in search of its autoantigen(s). J Clin Endocrinol Metab. 2007;92(6):2038–40.PubMedGoogle Scholar
  160. 160.
    Rivera JA. Lymphocytic hypophysitis: disease spectrum and approach to diagnosis and therapy. Pituitary. 2006;9(1):35–45.PubMedGoogle Scholar
  161. 161.
    Sato N, Sze G, Endo K. Hypophysitis: endocrinologic and dynamic MR findings. AJNR Am J Neuroradiol. 1998;19(3):439–44.PubMedGoogle Scholar
  162. 162.
    Maghnie M, et al. Evolution of childhood central diabetes insipidus into panhypopituitarism with a large hypothalamic mass: is ‘lymphocytic infundibuloneurohypophysitis’ in children a different entity? Eur J Endocrinol. 1998;139(6):635–40.PubMedGoogle Scholar
  163. 163.
    Corsello SM, et al. Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab. 2013;98(4):1361–75.PubMedGoogle Scholar
  164. 164.
    Yang JC, et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007;30(8):825–30.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Torino F, et al. Hypophysitis induced by monoclonal antibodies to cytotoxic T lymphocyte antigen 4: challenges from a new cause of a rare disease. Oncologist. 2012;17(4):525–35.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Torino F, et al. Endocrine side-effects of anti-cancer drugs: mAbs and pituitary dysfunction: clinical evidence and pathogenic hypotheses. Eur J Endocrinol. 2013;169(6):R153–64.PubMedGoogle Scholar
  167. 167.
    Blansfield JA, et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J Immunother. 2005;28(6):593–8.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Chodakiewitz Y, et al. Ipilimumab treatment associated pituitary hypophysitis: clinical presentation and imaging diagnosis. Clin Neurol Neurosurg. 2014;125:125–30.PubMedGoogle Scholar
  169. 169.
    Ryder M, et al. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer. 2014;21(2):371–81.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Downey SG, et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res. 2007;13(22 Pt 1):6681–8.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Roessmann U, Kaufman B, Friede RL. Metastatic lesions in the sella turcica and pituitary gland. Cancer. 1970;25(2):478–80.PubMedGoogle Scholar
  172. 172.
    Nagashima H, et al. Medulloblastoma with suprasellar solitary massive metastasis: case report. Neurol Neurochir Pol. 2016;50(3):211–4.PubMedGoogle Scholar
  173. 173.
    Muller HL, et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur J Endocrinol. 2011;165(1):17–24.PubMedGoogle Scholar
  174. 174.
    Muller HL, et al. Functional capacity, obesity and hypothalamic involvement: cross-sectional study on 212 patients with childhood craniopharyngioma. Klin Padiatr. 2003;215(6):310–4.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shilpa Mehta
    • 1
  • Benjamin Cohen
    • 2
  • Brenda Kohn
    • 3
  1. 1.Division of Pediatric EndocrinologyNYU Langone Medical CenterNew YorkUSA
  2. 2.Division of RadiologyNYU Langone Medical CenterNew YorkUSA
  3. 3.Division of Pediatric Endocrinology and DiabetesNew York University – Langone Medical Center, Hassenfeld Children’s HospitalNew YorkUSA

Personalised recommendations