Skip to main content

Integration of Adiabatic Demagnetization Refrigerators with Spaceflight Cryocoolers

  • Chapter
  • First Online:
Cryocoolers

Abstract

Cryogenic cooling is an increasingly vital technology for ultra-high-resolution space-based instruments. The vast majority of detectors for X-ray, infrared, and sub-millimeter radiation now rely on operating at very low temperature to achieve the sensitivities and low signal background required for the upcoming and future missions. Operating temperatures in the 50–100 mK range have become common, and some new detector technologies can benefit from even lower colder operation. Among the refrigeration techniques that can achieve such temperatures, adiabatic demagnetization refrigerators (ADR) have many advantages for space missions, including high efficiency, lack of gravity dependence, and wide operating range. However, as an inherently single-shot type of cooler, and one that requires relatively high current to drive the magnetic cycle, there are challenges for their implementation in space instruments and coupling to the cryocoolers and cryogenic systems that support their operation. In this chapter, we discuss these challenges, how they affect ADR and system design and operation, and options for optimizing performance and expanding capabilities to meet the demands of future space instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moseley SH, Mather JC, McCammon D (1984) Thermal detectors as X-ray spectrometers. J Appl Phys 56(1984):1257–1262

    Article  ADS  Google Scholar 

  2. Irwin KD, Hilton GC, Wollman DA, Martinis JM (1996) X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback. Appl Phys Lett 69:1945

    Article  ADS  Google Scholar 

  3. Smith SJ et al (2016) Transition-edge sensor pixel parameter design of the microcalorimeter array for the X-ray Integral Field Unit on Athena [Space Telescopes and Instrumentation 2016: ultraviolet to gamma ray]. In: den Herder JW, Takahashi T, Bautz M (eds) Proceedings of SPIE, vol 9905, 99052H

    Google Scholar 

  4. Gottardi L, Akamatsu H, Bruijn M, den Hartog R, den Herder J-W, Jack- son B, Kiviranta M, van der Kuur J, van Weers H (2016) Development of the super-conducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena. Nucl Instrum Methods Phys Res Sect A 824(11):622–625

    Article  ADS  Google Scholar 

  5. Doriese WB et al (2016) Developments in time-division multiplexing of X-ray transition-edge sensors. J Low Temp Phys 184:389–395

    Article  ADS  Google Scholar 

  6. Bender AN et al (2014) Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes. In: Holland WS, Zmuidzinas J (eds) Millimeter, submillimeter, and far-infrared detectors and instrumentation for astronomy VII. Proceeding of SPIE 9153, 91531A

    Google Scholar 

  7. Dobbs MA et al (2012) Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements. Rev Sci Instrum 83(7):073113

    Article  ADS  Google Scholar 

  8. Irwin KD, Cho HM, Doriese WB et al (2012) Advanced code-division multiplexers for superconducting detector arrays. J Low Temp Phys 167:588–594

    Article  ADS  Google Scholar 

  9. Barcons X, Nandra K, Barret D, den Herder J-W, Fabian AC, Piro L, Watson MG, the Athena Team (2015) Athena: the X-ray observatory to study the hot and energetic universe. J Phys Conf Ser 610:012008

    Article  Google Scholar 

  10. Harvey PM (1979) A far-infrared photometer for the Kuiper Airborne Observatory. Astron Soc Pac Publ 91:143–148

    Article  ADS  Google Scholar 

  11. Pilbratt GL, Riedinger JR, Passvogel T, Crone G, Doyle D, Gageur U, Heras AM, Jewell C, Metcalfe L, Ott S, Schmidt M (2010) Herschel Space Observatory: an ESA facility for far-infrared and submillimetre astronomy. Astron Astrophys 518:L1

    Article  ADS  Google Scholar 

  12. Planck collaboration (2011) Planck early results. II. The thermal performance of Planck. Astron Astrophys 536:A19

    Article  Google Scholar 

  13. Duband L, Clerc L, Ercolani E, Guillemet L, Vallcorba R (2008) Herschel flight models sorption coolers. Cryogenics 48:95

    Article  ADS  Google Scholar 

  14. Triqueneaux S, Sentis L, Camus P, Benoit A, Guyot G (2006) Design and performance of the dilution cooler system for the Planck mission. Cryogenics 46:288

    Article  ADS  Google Scholar 

  15. Kelley RL et al (2007) The Suzaku high resolution X-Ray spectrometer. Publ Astron Soc Japan 59:S77–S112

    Article  Google Scholar 

  16. Serlemitsos AT, SanSebastian M, Kunes E (1992) Design of a spaceworthy adiabatic demagnetization refrigerator. Cryogenics 32:117

    Article  ADS  Google Scholar 

  17. Sugita H, Sato Y, Nakagawa T, Murakami H, Kaneda H, Enya K, Murakami M, Tsunematsu S, Hirabayashi M (2008) Development of mechanical cryocoolers for the Japanese IR space telescope SPICA. Cryogenics 48:258–266

    Article  ADS  Google Scholar 

  18. Shirron PJ, Canavan ER, DiPirro MJ, Tuttle JG, Yeager CJ (2000) A multi-stage continuous-duty adiabatic demagnetization refrigerator. Adv Cryo Eng 45:1629–1638

    Article  Google Scholar 

  19. Lounasmaa OV (1974) Experimental principles and methods below 1 K. Academic, London

    Google Scholar 

  20. Pobell F (2007) Matter and methods at low temperatures, 3rd edn. Springer, New York, pp 203–213

    Book  Google Scholar 

  21. Shirron P (2014) Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators. Cryogenics 62:130–139

    Article  ADS  Google Scholar 

  22. Tuttle JG, Pourrahimi S, Canavan ER, DiPirro MJ, Shirron PJ (2006) A lightweight low-current 10 K magnet for space-flight ADRs. Cryogenics 46:196–200

    Article  ADS  Google Scholar 

  23. Burdyny T, Arnold DS, Rowe A (2014) AMR thermodynamics: semi-analytic modeling. Cryogenics 62:177–184

    Article  ADS  Google Scholar 

  24. Hagmann C, Richards PL (1994) Two-stage magnetic refrigerator for astronomical applications with reservoir temperatures above 4K. Cryogenics 34:221

    Article  ADS  Google Scholar 

  25. Shirron PJ, Kimball MO, Fixsen DJ, Kogut AJ, Li X, DiPirro MJ (2012) Design of the PIXIE adiabatic demagnetization refrigerators. Cryogenics 52:140–144

    Article  ADS  Google Scholar 

  26. Shirron PJ, Kimball MO, James BL, Wegel DC, Martinez RM, Faulkner RL, Neubauer L, Sansebastian M (2012) Design and predicted performance of the 3-stage ADR for the soft-X-ray spectrometer instrument on Astro-H. Cryogenics 52:165–171

    Article  ADS  Google Scholar 

  27. Shirron PJ, Kimball MO, James BL, Muench T, DiPirro MJ, Let- mate RV, Sampson MA, Bialas TG, Sneiderman GA, Porter FS, Kelley RL (2016) Operating modes and cooling capabilities of the 3-stage ADR developed for the soft X-ray spectrometer instrument on Astro-H. Cryogenics 74:2–9

    Article  ADS  Google Scholar 

  28. James BL, Martinez RM, Shirron PJ, Tuttle JG, Francis JJ, SanSebastian M, Wegel DC, Galassi NM, McGuinness DS, Puckett D, Flom Y (2012) Mechanical design of a 3-stage ADR for the Astro-H mission. Cryogenics 52:172--177

    Google Scholar 

  29. Wilson M (1983) Superconducting magnets. Oxford University Press, New York, p 162

    Google Scholar 

  30. Wikus P, Canavan ER, Heine ST, Matsumoto K, Numazawa T (2014) Magnetocaloric materials and the optimization of cooling power density. Cryogenics 62:150–162

    Article  ADS  Google Scholar 

  31. Olson JR, Roth E, Champagne P, Evtimov B, Nast TC (2008) High performance pulse tube cryocoolers. Adv Cryo Eng 53A:514–521

    Article  Google Scholar 

  32. Kittel C (1971) Introduction to solid state physics, 4th edn. Wiley, New York, p 263

    Google Scholar 

  33. Tuttle JG, Canavan ER, DiPirro MJ (2010) Thermal and electrical conductivity measurements of CDA 510 phosphor bronze. Adv Cryo Eng 56A:55–62

    Google Scholar 

  34. Ventura G, Barucci M, Gottardi E, Peroni I (2000) Low temperature thermal conductivity of Kevlar. Cryogenics 40:489–491

    Article  ADS  Google Scholar 

  35. Locatelli M, Arnaud D, Routin M (1976) Thermal conductivity of some insulating materials below 1 K. Cryogenics 16:374

    Article  ADS  Google Scholar 

  36. Wikus P, Hertel SA, Leman SW, McCarthy KA, Ojeda SM, Figueroa-Feliciano E (2011) The electrical resistance and thermal conductivity of Ti 15V-3Cr-3Sn-3Al at cryogenic temperatures. Cryogenics 51:41–44

    Article  ADS  Google Scholar 

  37. Shirron PJ (2014) Optimization strategies for single-stage, multi-stage and continuous ADRs. Cryogenics 62:140–149

    Article  ADS  Google Scholar 

  38. Johnson D. Cryogenic technology for CMB-Pol: mechanical cryocoolers for the 4K to 200K temperature range, CMB Polarization Workshop, Boulder, CO, August 27, 2008. http://cmbpol.uchicago.edu/workshops/technology2008/depot/johnsoncryocoolers.pdf¿.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Shirron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirron, P.J., DiPirro, M.J. (2020). Integration of Adiabatic Demagnetization Refrigerators with Spaceflight Cryocoolers. In: Atrey, M. (eds) Cryocoolers. International Cryogenics Monograph Series. Springer, Cham. https://doi.org/10.1007/978-3-030-11307-0_5

Download citation

Publish with us

Policies and ethics