Advertisement

Glucose, Insulin, and Inner Ear Pathology

  • Pedro Luiz Mangabeira Albernaz
  • Francisco Zuma e Maia
  • Sergio Carmona
  • Renato Valério Rodrigues Cal
  • Guillermo Zalazar
Chapter

Abstract

The inner ear has highly complex metabolic mechanisms. The maintenance of the endocochlear potential and of the chemical composition of endolymph is highly dependent on oxygen and glucose. This chapter discusses two mechanisms of reactive hypoglycemia that cause cochlear and vestibular symptoms. The inner ears are very sensitive organs and in many patients are the first to show signs of carbohydrate metabolism disorders. The cochlear and vestibular symptoms resulting from these disorders are very common, can be diagnosed and treated, and are often reversible.

Keywords

Reactive hypoglycemia Hyperinsulinemia Brush border membrane disease 

References

  1. 1.
    Mangabeira-Albernaz PL, Covell WP. Acoustic trauma lesions by fluorescence microscopy. Laryngoscope. 1962;72:1278–96.Google Scholar
  2. 2.
    Thalmann R, Matschinsky FM, Thalmann R. Quantitative study of selected enzymes involved in energy metabolism of the cochlear duct. Ann Otol Rhinol Laryngol. 1970;79:12–29.CrossRefGoogle Scholar
  3. 3.
    Degerman E, Rauch U, Lindberg S, Caye-Thomasen P, Hultgårdh A, Magnusson M. Expression of insulin signalling components in the sensory epithelium of the human saccule. Cell Tissue Res. 2013;352(3):469–78.  https://doi.org/10.1007/s00441-013-1614-x.CrossRefPubMedGoogle Scholar
  4. 4.
    Fernandez C. The effect of oxygen lack on cochlear potentials. Ann Otol Rhinol Laryngol. 1955;64:1193–203.CrossRefGoogle Scholar
  5. 5.
    Tsunoo M, Perlman HB. Respiration of the cochlea and function. Acta Otolaryngol. 1969;67:17–23.CrossRefGoogle Scholar
  6. 6.
    Wing KG. The experimental use of hypoglycemia to show whether glucose is a major fuel for the cochlear response, and further remarks concerning the lability of the vascular bed supplying the cochlear partition. Acta Otolaryngol. 1959;Suppl 148:87–93.Google Scholar
  7. 7.
    Mendelsohn M, Roderique J. Cationic changes in endolymph during hypoglycemia. Laryngoscope. 1972;82:1533–40.CrossRefGoogle Scholar
  8. 8.
    Thalmann R, Miyoshi T, Kusakari J, Ise I. Normal and abnormal energy metabolism of the inner ear. Otolaryngol Clin N Am. 1975;8:313–33.Google Scholar
  9. 9.
    Kuijpers W, Bonting SL. Localization and properties of ATPase in the inner ear of the guinea pig. Biochim Biophys Acta. 1969;173:477–85.CrossRefGoogle Scholar
  10. 10.
    Koide Y, Tajima S, Yoshida M, Konno M. Biochemical changes in the inner ear induced by insulin, in relation to cochlear microphonics. Ann Otol Rhinol Laryngol. 1960;69:1083–97.CrossRefGoogle Scholar
  11. 11.
    Suzuki T, Matsunami T, Hisa Y, Takata K, Takamatsu T, Oyamada M. Roles of gap junctions in glucose transport from glucose transporter 1-positive to -negative cells in the lateral wall of the rat cochlea. Histochem Cell Biol. 2009;131(1):89–102.CrossRefGoogle Scholar
  12. 12.
    Nin F, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y. The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc Natl Acad Sci U S A. 2008;105(5):1751–6.CrossRefGoogle Scholar
  13. 13.
    Quraishi IH, Raphael RM. Generation of the endocochlear potential: a biophysical model. Biophys J. 2008;94(8):L64–6.CrossRefGoogle Scholar
  14. 14.
    Jordão A. Estudos sobre a Diabete. Lisboa: Typographia da Academia; 1864.Google Scholar
  15. 15.
    Rust KR, Prazma J, Triana RJ, Michaelis OE 4th, Pillsbury HC. Inner ear damage secondary to diabetes mellitus. II. Changes in aging SHR/N-cp rats. Arch Otolaryngol Head Neck Surg. 1992;118(4):397–400.CrossRefGoogle Scholar
  16. 16.
    Harril JA. Headache and vertigo associated with hypoglycemia tendency. Laryngoscope. 1951;61:138–45.Google Scholar
  17. 17.
    Tintera JW, Goldman HB. Hypoadrenocorticism in otolaryngological surgical procedures. N Y St J Med. 1956;56:872–7.Google Scholar
  18. 18.
    Goldman HB. Hypoadrenocorticism and endocrinologic treatment of Meniere’s disease. N Y St J Med. 1962;62:377–82.Google Scholar
  19. 19.
    Powers WH. Metabolic aspects of Meniere’s disease. Laryngoscope. 1972;82:1176–85.CrossRefGoogle Scholar
  20. 20.
    Updegraff WR. Impaired carbohydrate metabolism and idiopathic Meniere’s disease. Ear Nose Throat J. 1977;56(4):160–3.PubMedGoogle Scholar
  21. 21.
    Kraft JR. Detection of diabetes mellitus in situ (occult diabetes). Lab Med. 1976;6:10–22.CrossRefGoogle Scholar
  22. 22.
    Kraft JR. Diabetes epidemic and you: Trafford Publishing; 2008.Google Scholar
  23. 23.
    Fukuda Y. Glicemia, Insulinemia e Patologia da Orelha Interna. 1982, Ph.D. thesis. Escola Paulista de Medicina.Google Scholar
  24. 24.
    Mangabeira Albernaz PL, Fukuda Y. Glucose, insulin and inner ear pathology. Acta Otolaryngol (Stockh). 1984;97:496–501.CrossRefGoogle Scholar
  25. 25.
    Mangabeira-Albernaz PL, Fukuda Y, Vilela MP, Miszputen SJ. Vestibular disorders caused by defective enzyme mechanisms in the small intestine. Acta Otolaryngol (Stockh). 1985;99:330–5.CrossRefGoogle Scholar
  26. 26.
    Mangabeira-Albernaz PL, Miszputen SJ. Vertigem e enzimas digestivas. In: Zuma e Maia FC, Mangabeira Albernaz PL, Carmona PL, editors. Otoneurologia Atual. Rio de Janeiro: Revinter; 2014. p. 365–79.Google Scholar
  27. 27.
    Kazmierczak H, Doroszewska G. Metabolic disorders in vertigo, tinnitus, and hearing loss. Int Tinnitus J. 2001;7(1):54–8.PubMedGoogle Scholar
  28. 28.
    Mangabeira-Albernaz PL. Inner ear disorders induced by impaired carbohydrate metabolism – a long term follow up. In: Lim DJ, editor. Meniere’s disease & inner ear homeostasis disorders – proceedings of the 5th international symposium. Los Angeles: House Ear Institute; 2005. p. 326–7.Google Scholar
  29. 29.
    D’Avila C, Lavinsky L. Glucose and insulin profiles and their correlations in Ménière’s disease. Int Tinnitus J. 2005;11:170–6.PubMedGoogle Scholar
  30. 30.
    Zuma e Maia FC, Lavinsky L. Distortion product otoacoustic emissions in an animal model of induced hyperinsulinemia. Int Tinnitus J. 2006;12:133–9.PubMedGoogle Scholar
  31. 31.
    Selcuk A, Terzi H, Turkay U, Kale A, Genc S. Does gestational diabetes result in cochlear damage? J Laryngol Otol. 2014;128:961–5.CrossRefGoogle Scholar
  32. 32.
    Mangabeira-Albernaz PL. Hearing loss, dizziness, and carbohydrate metabolism. Int Arch Otorhinolaryngol. 2016;20(3):261–70.  https://doi.org/10.1055/s-0035-1558450. CrossRefGoogle Scholar
  33. 33.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pedro Luiz Mangabeira Albernaz
    • 1
  • Francisco Zuma e Maia
    • 2
  • Sergio Carmona
    • 3
  • Renato Valério Rodrigues Cal
    • 4
  • Guillermo Zalazar
    • 5
  1. 1.Department of OtolaryngologyAlbert Einstein Hospital São PauloBrazil
  2. 2.Otology / NeurotologyClínica MaiaCanoasBrazil
  3. 3.NeurotologyFundación San Lucas para la NeurocienciaRosárioArgentina
  4. 4.Curso de MedicinaCentro Universitário do ParáBelémBrazil
  5. 5.Department of Neurology in Hospital de San LuisFundación San Lucas para la NeurocienciaRosarioArgentina

Personalised recommendations