Advertisement

Multispectral Ecological Control of Parameters of Water Environments Using a Quadrocopter

  • Serhii KvaterniukEmail author
  • Vasyl Petruk
  • Orest Kochan
  • Valeriy Frolov
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 198)

Abstract

The aim of the work is to improve the methods and means of environmental monitoring of the parameters of aqueous media using a quadrocopter with a multispectral camera. The process of indirect measurement of biomass and pigment parameters of phytoplankton in the near-surface layer of the water objects is investigated. Instrumental and methodical errors of indirect measurements in the near-surface layer of the aquatic environment with the use of the developed means of ecological control are analyzed. The effect of changes in the spectral characteristics of illumination was corrected with respect to the object with known spectral characteristics of the diffuse reflection coefficient. In the course of multiple regression, regression equations were obtained that allow determining biomass and pigment parameters of phytoplankton based on processing of multispectral images. An analysis of measurement errors was used when using the eight-channel multispectral cameras CMS. Optimal wavelengths of spectral channels and their number are selected from the condition of ensuring a minimum value of the total error.

Keywords

Ecological monitoring Multispectral measurements Water Phytoplankton 

References

  1. 1.
    Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. J. Eur. Communities L 327, 1–73 (2000). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32000L0060
  2. 2.
    Working Document Guidance Document on Aquatic Ecotoxicology in the context of the Directive 91/414/EEC (2002)Google Scholar
  3. 3.
    Arapis, G., Goncharova, N., Baveye, P.: Ecotoxicology Ecological Risk Assessment and Multiple Stressors. Springer, Berlin (2006)CrossRefGoogle Scholar
  4. 4.
    Dell’Uomo, A.: Use of algae for monitoring rivers in Italy: current situation and perspectives. In: Prygiel, J., Whitton, B.A., Buckowska, J. (eds.) Use of algae for monitoring rivers III, pp. 17–25. Agence de I’Eau Artois-Picardie Press, Douai Cedex (1999)Google Scholar
  5. 5.
    Bozym, M., Klosok-Bazan, I., Wzorek, M.: Analyzing THM concentrations in selected indoor swimming pool waters in the Opole Region. Polish J. Environ. Stud. 3(27), 1001–1008 (2018)CrossRefGoogle Scholar
  6. 6.
    Martsenyuk, V., Petruk, V., Kvaternyuk, S., Pohrebennyk, V., Bezusiak, Y.I., Petruk, R.V., Kłos-Witkowska, A.: Multispectral control of water bodies for biological diversity with the index of phytoplankton. In: 16th International Conference on Control, Automation and Systems (ICCAS 2016), pp. 988–993 (2016)Google Scholar
  7. 7.
    Petruk, V.G., Kvanternyuk, S.M., Denysiuk, Y.M., Gromaszek, K.: The spectral polarimetric control of phytoplankton in photobioreactor of the wastewater treatment. In: Proceedings of SPIE, 8698H (2012)Google Scholar
  8. 8.
    Mikhalieva, M., Mykyychuk, M., Hots, N., Dzikovska, Y.: Use of Electric and acoustic technologies for automated control of liquid. In: Proceedings of the 2016 XI-th International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT), pp. 88–90 (2016)Google Scholar
  9. 9.
    Kudela, R.M., Palacios, S.L., Austerberry, D.C., et al.: Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sens. Environ. 167, 196–205 (2015)CrossRefGoogle Scholar
  10. 10.
    Enriquez, S.: Light absorption efficiency and the package effect in leaves of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 289, 141–150 (2005)CrossRefGoogle Scholar
  11. 11.
    Rodrigues-Mozaz, S., Marco, M.-P., de Alda, M.L., Barcelo, D.: Biosensors for environmental applications. Future development trends. Pure Appl. Chem. 4(76), 723–752 (2004)CrossRefGoogle Scholar
  12. 12.
    Vilarino, N., Fonfria, E., Louzao, C., Botana, L.: Use of biosensor as alternatives to current regulatory methods for marine biotoxins. Sensors 9, 9414–9443 (2009)CrossRefGoogle Scholar
  13. 13.
    Kiersch, J., Siltanen, Ch., Zhou, Q., et al.: Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev. 42, 8733–8768 (2013)CrossRefGoogle Scholar
  14. 14.
    Starodub, M., Romanov, V., Kochan, R., Sachenko, A., Kochan, O.: Implementation of SPR-biosensors for express-diagnostics of acute viral infection and mycotocsicosis. In: Proceedings of the International Workshop Medical Measurements and Applications (MeMeA), pp. 1–3 (2007)Google Scholar
  15. 15.
    OECD: OECD series on testing and assessment No. 34. Guidance document on the validation and international acceptance of new or updated test methods for hazard Assessment (2005). Available at: http://www.oecd.org/document/30/0,3343,en_2649_34377_1916638_1_1_1_1,00.html
  16. 16.
    Mclnnis, R.: Daphnia magna 48h static bioassay method for acute toxicity in environmental samples. In: Methods for Toxicological Analysis of Waters, Wastewaters and Sediments. National Water Research Institute (NWRI). Burlington, Environment Canada (1989)Google Scholar
  17. 17.
    Shrestha, S., Deleuran, L.C., Olesen, M.H., et al.: Use of multispectral imaging in varietal identification of tomato. Sensors 2(15), 4496–4512 (2015)CrossRefGoogle Scholar
  18. 18.
    Shi, S., Song, S., Gong, W., et al.: Improving backscatter intensity calibration for multispectral LiDAR. Geosci. Remote Sens. Lett. IEEE 7(12), 1421–1425 (2015)CrossRefGoogle Scholar
  19. 19.
    Starovoitov, V., Makarau, A., Zakharov, I. et al.: Multispectral image enhancement based on fusion and super-resolution. In: 15th European Signal Processing Conference, pp. 2174–2178 (2007)Google Scholar
  20. 20.
    Petruk, R., Pohrebennyk, V., Kvaternyuk, S., Bondarchuk, O., Cygnar, M.: Multispectral television monitoring of contamination of water objects by using macrophyte-based bioindication. In: 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Book 5, vol. 2, pp. 597–602 (2016)Google Scholar
  21. 21.
    Petruk, V., Kvaternyuk, S., Yasynska, V., et al.: The method of multispectral image processing of phytoplankton for environmental control of water pollution. In: Proceedings of SPIE, 98161N (2015)Google Scholar
  22. 22.
    Petruk, V., Kvaternyuk, O., Kvaternyuk, S. et al.: Methods and means of measuring control and diagnostics of biological tissues in vivo based on measurements of color coordinates and multispectral image. In: Proceedings of SPIE, 98161H (2015)Google Scholar
  23. 23.
    Jozwik, J., Wac-Wlodarczyk, A., Michalowska, J., et al.: Monitoring of the noise emitted by machine tools in industrial conditions. J. Ecol. Eng. 19(1), 83–93 (2018)CrossRefGoogle Scholar
  24. 24.
    Kvaternyuk, S., Pohrebennyk, V., Petruk, R. et al.: Multispectral television measurements of parameters of natural biological media. In: 17th International Multidisciplinary Scientific GeoConference SGEM 2017, vol. 17, issue no. 51, pp. 689–696 (2017)Google Scholar
  25. 25.
    Kvaternyuk, S., Pohrebennyk, V., Petruk, R. et al.: Increasing the accuracy of multispectral television measurements of phytoplankton parameters in aqueous media. In: 17th International Multidisciplinary Scientific GeoConference SGEM 2017, vol. 17, issue no. 33, pp. 219–225 (2017)Google Scholar
  26. 26.
    Kvaternyuk, S., Pohrebennyk, V., Petruk, V. et al.: Mathematical modeling of light scattering in natural water environments with phytoplankton particles. In: 18th International Multidisciplinary Scientific GeoConference SGEM 2018, vol. 18, issue no. 2.1, pp. 545–552 (2018)Google Scholar
  27. 27.
    Petruk, V., Kvaternyuk, S., Kvaternyuk, O., et al.: Assessment of the validity of the diagnosis of damage of tissues by multispectral method using neural network. Przeglad Elektrotechniczny 5(93), 106–109 (2017)Google Scholar
  28. 28.
    Ustin, S., Gitelson, A., Jacquemoud, S., et al.: Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 113, 67–77 (2009)CrossRefGoogle Scholar
  29. 29.
    Ishchenko, V., Pohrebennyk, V., Borowik, B., Falat, P., Shaikhanova, A.: Toxic substances in hazardous household waste. In: 18th International Multidisciplinary Scientific GeoConference SGEM 2018, vol. 18, issue no. 4.2, pp. 223–230 (2018)Google Scholar
  30. 30.
    Ishchenko, V.: Prediction of heavy metals concentration in the leachate: a case study of Ukrainian waste. J. Mater. Cycles Waste Manage. 3(20), 1892–1900 (2018)CrossRefGoogle Scholar
  31. 31.
    Ishchenko, V., Llori, J., Ramos, C.: Determinación del impacto ambiental de los componentes de champús sobre las algas Chlorella por el método de bioindicación. Tecnología y Cien. del Agua 8(6), 37–46 (2017)CrossRefGoogle Scholar
  32. 32.
    Ishchenko, V.: Soil contamination by heavy metal mobile forms near landfill. J. Environ. Waste Manage. 20(1), 66–74 (2017)CrossRefGoogle Scholar
  33. 33.
    Ishchenko, V., Pohrebennyk, V., Kochanek, A., Przydatek, G.: Comparative environmental analysis of waste processing methods in paper recycling. In: 17th International Multidisciplinary Scientific GeoConference SGEM 2017, vol. 17, issue no. 51, pp. 227–234 (2017)Google Scholar
  34. 34.
    Styskal, O., Ishchenko, V., Petruk, R., Pohrebennyk, V., Kochanek, A.: Assessment of chlorinated water impact on phytoplankton. In: 16th International Multidisciplinary Geoconference SGEM 2016, Book 3, vol. 3, pp. 373–380 (2016)Google Scholar
  35. 35.
    Ishchenko, V., Pohrebennyk, V., Kozak Ya., Kochanek, A., Politylo R.: Assessment of batteries influence on living organisms by bioindication method. In: 16th International Multidisciplinary Geoconference SGEM 2016, Book 5, vol. II, pp. 85–92 (2016)Google Scholar
  36. 36.
    Duysens, L.N.M.: The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. Biophys. Acta 19, 1–2 (1956)CrossRefGoogle Scholar
  37. 37.
    Kirk, J.T.O.: A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters II Spherical cells. New Phytol. 75, 21–36 (1975)CrossRefGoogle Scholar
  38. 38.
    Kirk, J.T.O.: A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters III. Cylindrical and spheroidal cells. New Phytol. 77, 341–358 (1976)CrossRefGoogle Scholar
  39. 39.
    Morel, A., Bricaud, A.: Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res. 28, 1375–1393 (1981)CrossRefGoogle Scholar
  40. 40.
    Morel, A., Bricaud, A.: Inherent optical properties of algal cells including picoplankton: theoretical and experimental results. Can. Bull. Fish Aquat. Sci. 214, 521–529 (1986)Google Scholar
  41. 41.
    Haardt, H., Maske, H.: Specific in vivo absorption coefficient of chlorophyll a at 675 nm. Limnol. Oceanogr. 32, 608–619 (1987)CrossRefGoogle Scholar
  42. 42.
    Verkruysse, W., Lucassen, G.W., de Boer, J.F., et al.: Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media. Phys. Med. Biol. 42, 51–65 (1997)CrossRefGoogle Scholar
  43. 43.
    Enriquez, S., Agusti, S., Duarte, S.M.: Light absorption by seagrass Posidonia oceanica leaves. Mar. Ecol. Prog. Ser. 86, 201–204 (1992)CrossRefGoogle Scholar
  44. 44.
    Katsev, I.L., Zege, E.P., Prikhach, A.S., Polonsky, I.N.: Efficient technique to deter-mine backscattered light power for various atmospheric and oceanic sounding and imaging systems. JOSA A 6(14), 1338–1346 (1997)CrossRefGoogle Scholar
  45. 45.
    CMS: Multi-spectral camera. Product Manual [Electronic resource]. https://www.silios.com

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Serhii Kvaterniuk
    • 1
    Email author
  • Vasyl Petruk
    • 1
  • Orest Kochan
    • 2
  • Valeriy Frolov
    • 3
  1. 1.Department of Ecology and Environmental SafetyVinnytsia National Technical UniversityVinnytsiaUkraine
  2. 2.Department of Measuring Information TechnologiesLviv Polytechnic National UniversityLvivUkraine
  3. 3.Department of EcologyNational Aviation UniversityKievUkraine

Personalised recommendations