Advertisement

Abundance and Diversity of the Soil Microarthropod Fauna from the Cuatro Ciénegas Basin

  • Margarita Ojeda
  • Jaime Gasca-Pineda
Chapter
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)

Abstract

Soil is one of the less studied resources of terrestrial ecosystems, both in terms of its biodiversity and internal processes. In particular, microarthropods of desert ecosystems have been poorly studied worldwide, and probably less than 10% of the total soil species have been described. Nevertheless, microarthropods are responsible for one of the most important environmental functions: the decomposition of organic matter. In this chapter, we present the results of the first survey of soil microarthropod communities from the CCB. The study was conducted in 2015–2016 to identify the microarthropods’ diversity in its components of richness and abundance. We collected 6721 organisms of 6 classes, 26 orders, and 60 families. Acari was the most abundant and diverse group and is dominated by Prostigmata (20 families) and Oribatida (16 families). Hexapoda is represented by Collembola, Coleoptera, Hemiptera, Hymenoptera, and Psocoptera. Differences in mite assemblages are attributable to the type of vegetation in the different sites of the CCB. The site’s taxonomic diversity is associated with habitat heterogeneity. The high productivity micro-habitats could produce high levels of biomass and not necessarily more diverse communities. We observed broad similarities in microarthropod composition at familial level among arid-semiarid ecosystems elsewhere in the world. Knowledge of soil microarthropod community will be helpful to understand the network of interactions and the flow of nutrients and energy within this desert ecosystem; all these are crucial elements to assess the health of the soil and to establish appropriate strategies for it use, management, and conservation.

Keywords

Soil mites Edaphic Organic matter Decomposition Desert 

Notes

Acknowledgments

We would like to thank Valeria Souza and Luis E. Eguiarte for the invitation to participate in the inventory of the animal diversity of the Cuatro Ciénegas Basin as well as for being part of the editors of this volume. To Ana L. Carlos for assistance during field and laboratory work. We also want to thank Dr. Tila M Pérez for allowing us to use installations and equipment of the CNAC-IB, UNAM. We acknowledge the financial support of Alianza WWF-Fundación Carlos Slim.

References

  1. André HM, Noti MI, Lebrun P (1994) The soil fauna: the other last frontier. Biodivers Conserv 3:45–56CrossRefGoogle Scholar
  2. André HM, Ducarme X, Lebrun P (2002) Soil biodiversity: myth, reality or conning? Oikos 96:3–24CrossRefGoogle Scholar
  3. Balogh J (1972) The Oribatid genera of the world. Akademiai Kiadó, Budapest. 188 pp, 71 platesGoogle Scholar
  4. Balogh J, Balogh P (1988) Oribatid mites of the neotropical region I. Akademiai Kiadó, Budapest. 335 ppGoogle Scholar
  5. Brusca RC, Moore W, Shuster SM (2016) Invertebrates. 3rd Edition. Sinauer Assoc. Sunderland, MassachussettsGoogle Scholar
  6. Cepeda-Pizarro JG, Whitford WG (1989a) Species abundance distribution patterns of microarthropods in surface decomposing leaf-litter and mineral soil on a desert watershed. Pedobiologia 33:254–268Google Scholar
  7. Cepeda-Pizarro JG, Whitford WG (1989b) Spatial and temporal variability of higher microarthropod taxa along a transect in a northern Chihuahuan desert watershed. Pedobiologia 33:101–111Google Scholar
  8. Cepeda-Pizarro JG, Whitford WG (1990) Microartrópodos edáficos del desierto Chihuahuense, al norte de México. Fol Entomol Mex 78:257–272Google Scholar
  9. Cerritos R, Eguiarte LE, Avitia M, Siefert JL, Travisano M, Rodríguez-Verdugo A, Souza V (2011) Diversity of culturable thermo-resistant aquatic bacteria along an environmental gradient in Cuatro Cienegas, Coahuila, México. Antonie Van Leeuwenhoek 99:303–318CrossRefPubMedGoogle Scholar
  10. Challenger A (1998) Utilización y conservación de los ecosistemas terrestres de México: Pasado, presente yfuturo. Conabio-Instituto de Biología, UNAM-Agrupación Sierra Madre, MéxicoGoogle Scholar
  11. Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier Academic Press, San Diego. 408 ppGoogle Scholar
  12. Dindal D (1990) Soil biology guide. Wiley, New YorkGoogle Scholar
  13. Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner H H (2018). Adespatial: multivariate multiscale spatial analysis. R package version 0.2-0. https://CRAN.R-project.org/package=adespatial
  14. Edney EB, McBrayer JF, Franco PJ, Phillips AW (1976) Abundance and distribution of soil microarthropods in Rock Valley, Nevada. US/IBP Desert Biome Res Men Utah State Univ Logan 3:39–46Google Scholar
  15. Elliot ET, Anderson RJ, Coleman DC, Cole CV (1980) Habitable pore space and microbial trophic interactions. Oikos 35:327–335CrossRefGoogle Scholar
  16. Elser JJ, Schampel JH, García-Pichel F, Wade BD, Eguiarte L, Souza V, Escalante A, Farmer JD (2005) Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshw Biol 50:1808–1825CrossRefGoogle Scholar
  17. Escalante AE, Eguiarte LE, Espinosa-Asuar L, Forney LJ, Noguez AM, Souza V (2008) Diversity of aquatic prokaryotic communities in the Cuatro Ciénegas basin. FEMS Microbiol Ecol 65:50–60CrossRefPubMedGoogle Scholar
  18. Estrada VEG, Sánchez I, Bassols I (1988) Ácaros del suelo de dos zonas del Valle de Tehuacán Puebla, México. Fol Entomol Mex 76:225–236Google Scholar
  19. Franco PJ, Edney EB, McBrayer JF (1979) Distribution and abundance of soil arthropods in the northern Mojave desert. J Arid Environ 2:137–149CrossRefGoogle Scholar
  20. Fisher FM, Parker LW, Anderson JP, Whitford WG (1987) Nitrogen mineralization in a desert soil: interacting effects of soil moisture and nitrogen fertilizer. Soil Sci Soc Am J 51:1033–1041CrossRefGoogle Scholar
  21. Fisher FM, Zak JC, Cunningham GL, Whitford WG (1988) Water and nitrogen effects on growth and allocation patterns of creosote bush in the northern Chihuahuan Desert. J Range Manag 41:387–391CrossRefGoogle Scholar
  22. Gallardo A, Schlesinger WH (1990) Estimating microbial biomass nitrogen using the fumigation-incubation and fumigation-extraction methods in a warm-temperate forest soil. Soil Biol Biochem 22:927–932CrossRefGoogle Scholar
  23. Hoffmann A, López-Campos MG (2000) Biodiversidad de los ácaros en México. Universidad Nacional Autónoma de México, México. 230 ppGoogle Scholar
  24. Holt JA (1985) Acari and Collembolain the litter and soil of three north Queensland rainforests. Aust J Ecol 10:57–65CrossRefGoogle Scholar
  25. Hughes AM (1961) The mites of stored food. Ministry of Agriculture, Fischeries and Food. Cornell University, New York. 400 ppGoogle Scholar
  26. Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plan growth. Ecol Monogr 55:119–140CrossRefGoogle Scholar
  27. Kaczmarek M, Kajak A, Wasilewska L (1995) Interactions between diversity of grassland vegetation, soil fauna and decomposition processes. Acta Zool Fennica 196:236–238Google Scholar
  28. Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol Rev 84:375–389CrossRefPubMedGoogle Scholar
  29. Kethley J (1990) Acarina: Prostigmata (Actinedida). In: Dindal DL (ed) Soil biology guide. Wiley-Interscience, New York, pp 667–756Google Scholar
  30. Kethley J (1991) A procedure for extraction of microarthropods from bulk soil samples with emphasis on inactive stages. Agric Ecosyst Environ 34:192–200CrossRefGoogle Scholar
  31. Kitchell JF, O’Neill RV, Webb D, Gallepp GW, Bartell SM, Koonce JF, Ausmus BS (1979) Consumer regulation of nutrient cycling. Bioscience 29:28–34CrossRefGoogle Scholar
  32. Krantz G, Walter D (eds) (2009) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, 807 ppGoogle Scholar
  33. Loots GC, Ryke PAJ (1967) The ratio Oribatei: Trombidiformes with reference to organic matter content in soils. Pedobiologia 7:121–124Google Scholar
  34. Luxton M (1972) Studies on the oribatid mites of a Danish beech wood soil. I: nutritional biology. Pedobiologia 12:434–463Google Scholar
  35. Luxton M (1981) Studies on the Oribatid mites of a Danish beech wood soil. IV. Developmental biology. Pedobiologia 21:312–340Google Scholar
  36. MacKay WP, Silva S, Lightfoot DC, Pagani MI, Whitford WG (1986) Effect of increased soil moisture and reduced soil temperature on a desert soil arthropod community. Am Midl Nat 116:45–56CrossRefGoogle Scholar
  37. Mackay WP, Silva S, Whitford WG (1987) Diurnal activity patterns and vertical migration in desert soil microarthropods. Pedobiologia 30:65–71Google Scholar
  38. Moore JC, Walter DE, Hunt HE (1988) Arthropod regulation of micro- and meso- biota in below-ground detrital foodwebs. Annu Rev Entomol 33:419–439CrossRefGoogle Scholar
  39. Moreno-Letelier A, Olmedo-Alvarez G, Eguiarte LE, Souza V (2012) Divergence and phylogeny of Firmicutes from the Cuatro Ciénegas Basin, Mexico: a window to an ancient ocean. Astrobiology 12:674–684CrossRefPubMedPubMedCentralGoogle Scholar
  40. Neher DA, Lewins SA, Weicht TR, Darby BJ (2009) Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan Deserts. J Arid Environ 73:672–677CrossRefGoogle Scholar
  41. Noble J, Whitford WG, Kaliszweski M (1996) Soil and litter microarthropod populations from two contrasting ecosystems in semi-arid eastern Australia. J Arid Environ 32:329–346CrossRefGoogle Scholar
  42. Noy-Meir I (1985) Desert ecosystem structure and function. In: Evenari M, Noy-Meir I, Goodall DW (eds) Hot desert and arid shrub-lands. Ecosystems of the world. Elsevier, Amsterdam, pp 93–104Google Scholar
  43. Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin O'Hara RB, Gavin L, Simpson L, Solymos P, Stevens MH, Szoecs E, Wagner E (2018). Vegan: community ecology package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan
  44. Palacios-Vargas JG, Iglesias R (2004) Oribatei (Acari). In: Llorente Bousquets JE, Morrone JJ et al (eds) Biodiversidad, taxonomía y biogeografía de artrópodos de México: hacia una síntesis de su conocimiento, vol IV. Universidad Nacional Autónoma de México y Conabio, México, pp 431–468Google Scholar
  45. Palacios-Vargas JG, Mejía-Recamier BE, Oyarzabal A (2014) Guía Ilustrada para los artrópodos edáficos. 1a edición. UNAM, Facultad de Ciencias, México, 88 ppGoogle Scholar
  46. Parker LW, Freckmann M, Steinberg Y, Driggers L, Whitford GW (1984) Effects of simulated rainfall on desert soil biota: soil respiration microflora amd protozoa. Pedobiologia 27:185–195Google Scholar
  47. Perroni Y, García-Oliva F, Tapia-Torres Y, Souza V (2014) Relationship between soil P fractions and microbial biomass in an oligotrophic grassland-desert scrub system. Ecol Res 29:463–472CrossRefGoogle Scholar
  48. Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:288–388CrossRefGoogle Scholar
  49. Powers RF, Tiarks AE, Boyle JR (1998) Assessing soil quality: Practicable standards for sustainable forest productivity in the United States. In: Davidson EA (ed) The contribution of soil science to the development of and implementation of criteria and indicators of sustainable forest management, SSSA special publication 53. Soil Science Society of America, Madison, pp 53–80Google Scholar
  50. Price DW (1973) Abundance and vertical distribution of microarthropods in the surface layer of a California pine forest soil. Hilgardia 42:121–147CrossRefGoogle Scholar
  51. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/Google Scholar
  52. Rodriguez-Zaragoza S, González-Ruíz T, Gonzalez-Lozano E, Lozada-Rojas A, Mayzlish-Gati E, Steinberger Y (2008) Vertical distribution of microbial communities under the canopy of two legume bushes in the Tehuacan Desert, Mexico. Eur J Soil Biol 44:373–380CrossRefGoogle Scholar
  53. Santos PF, Depree E, Whitford WG (1978) Spatial distribution of litter and microarthropods in a Chihuahuan desert ecosystem. J Arid Environ 1:41–48CrossRefGoogle Scholar
  54. Santos PF, Whitford WG (1981) The effects of microarthropods on litter decomposition in a Chihuahuan desert ecosystem. Ecology 62:654–663CrossRefGoogle Scholar
  55. SEMARNAT. Secretaría del Medio Ambiente y Recursos Naturales (2010) Norma Oficial Mexicana NOM-059- SEMARNAT-2010. Publicada el 30 de diciembre de 2010 en el Diario Oficial de la FederaciónGoogle Scholar
  56. Sharifi MR, Meinzer FC, Nilsen ET, Rundel PW, Virginia RA, Jarrell WM, Herman DJ, Clark PC (1988) Effect of manipulation of water and nitrogen supplies on the quantitative phenology of Larrea tridentata (creosote bush) in the Sonoran desert of California. Am J Bot 75:1163–1174CrossRefGoogle Scholar
  57. Silva S, Whitford WG, Jarrell WM, Virginia RA (1989) The microarthropod fauna associated with a deep rooted legume, Prosopis glandulosa, in the Chihuahuan Desert. Biol Fertil Soils 7:330–335CrossRefGoogle Scholar
  58. Socarrás A (2013) Mesofauna edáfica: indicador biológico de la calidad del suelo. Pastos y Forrajes 36:5–13Google Scholar
  59. Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodriguez-Martinez JM, Soberon X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci U S A 103:665–6570Google Scholar
  60. Steinberger Y, Freckman DW, Parker LW, Whitford WG (1984) Effects of simulated rainfall and litter quantities on desert soil biota: nematodes and microarthropods. Pedobiologia 26:275–284Google Scholar
  61. Steinberger Y, Wallwork JA (1985) Composition and vertical distribution patterns of the microarthropod fauna in a Negev desert soil. J Zool 206:329–339CrossRefGoogle Scholar
  62. Steinberger Y, Orion D, Whitford WG (1988) Population dynamics of nematodes in the Negev Desert soil. Pedobiologia 31:223–228Google Scholar
  63. Steinberger Y (1990) Acarofauna of a Negev desert loess plain. Acarologia 31:313–319Google Scholar
  64. Subías L (2004) Listado Sistemático, Sinonímico y Biogeográfico de los Ácaros Oribátidos (Acariformes, Oribatida) del Mundo (Excepto fósiles). Graellsia 60:3–305CrossRefGoogle Scholar
  65. Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizae of Mojave Desert Plants. West N Am Nat 62(3):327–334Google Scholar
  66. Villarreal-Rosas J, Palacios-Vargas JG, Maya Y (2014) Microarthropod communities related with biological soil crust in a desert scrub in northwestern Mexico. Rev Mex Biodivers 85:513–522CrossRefGoogle Scholar
  67. Wallwork JA (1970) Ecology of soil animals. McGraw-Hill, LondonGoogle Scholar
  68. Wallwork JA (1976) The distribution and diversity of soil fauna. Academic Press, London. 356 ppGoogle Scholar
  69. Wallwork JA, Kamill BW, Whitford WG (1985) Distribution and diversity patterns of soil mites and other microarthropods in a Chihuahuan Desert site. J Arid Environ 9:215–231Google Scholar
  70. Walter DE (1988) Predation and mycophagy by endeostigmatid mites (Acariformes: Prostigmata). Exp Appl Acarol 4:159–166CrossRefGoogle Scholar
  71. Walter DE, Hunt HW, Elliott ET (1988) Guilds or functional groups? An analysis of predatory arthropods from a shortgrass steppe soil. Pedobiologia 31:247–260Google Scholar
  72. Walter DE, Proctor HC (2013) Mites: Ecology, Evolution and Behaviour: Life at a Microscale, 2nd edn. Springer, DordrechtCrossRefGoogle Scholar
  73. Wasserstrom H, Whitford WG, Steinberg Y (2016) Spatiotemporal variations of soil microarthropod communities in the Negev Desert. Pedosphere 26:451–461CrossRefGoogle Scholar
  74. West NE (1981) Nutrient cycling in desert ecosystems. In: Goodall DW, Perry RA, Howes KMW (eds) Arid-land Ecosystems: Structure, functioning and management. 2:301–324Google Scholar
  75. Whitford WG (1989) Abiotic controls on the functional structure of soil food webs. Biol Fertil Soils 8:1–6CrossRefGoogle Scholar
  76. Whitford WG (1996) The importance of the biodiversity of soil biota in arid ecosystems. Biodivers Conserv 5:185–195CrossRefGoogle Scholar
  77. Whitford WG, Freckmann DW, Parker LW, Shaefer D, Santos PF (1983) The contributions of soil fauna to nutrient cycles in desert systems. Proceedings of the VIII international colloquium of soil zoologyGoogle Scholar
  78. Whitford WG, Parker LW (1989) Contributions of soil fauna to decomposition and mineralization processes in semiarid and arid ecosystems. Arid Soil Res Rehab 3:199–215CrossRefGoogle Scholar
  79. Wood TG (1971) The distribution and abundance of “Folsomides deserticola” (Collembola:Isotomidae) and other microarthropods in arid and semiarid soils in Southern Australia, with note on nematode populations. Pedobiologia 11:446–468Google Scholar
  80. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Margarita Ojeda
    • 1
  • Jaime Gasca-Pineda
    • 2
  1. 1.Colección Nacional de Ácaros, Instituto de Biología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Departamento de Biología de la Conservación, Centro de Investigación Científica yEducación Superior de EnsenadaEnsenadaMexico

Personalised recommendations