Advertisement

Evaluating the Hypothesis of Pleistocene Refugia for Mammals in the Cuatro Ciénegas Basin

  • Niza Gámez
  • Gabriela Castellanos-Morales
Chapter
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)

Abstract

The Cuatro Ciénegas Basin (CCB) in the state of Coahuila, Mexico, is a very diverse ecosystem with high endemism of flora and fauna. It is included in the Ramsar list of wetlands and considered as a priority area for conservation by the World Wildlife Fund (WWF). This site is located within the Chihuahuan Desert (CD) in an isolated area surrounded by the Sierra Madre Oriental and Sierra del Carmen. A previous study by Contreras-Balderas et al. (Southwest Nat 52:400–409, 2007) found 39 mammalian species occurring in the CCB Natural Protected Area, 30 of which are widespread. These authors concluded that there has been a long-term environmental stability in the area, based on archaeological records. In addition, the mammalian biota found is an admixture between the biotas from the Chihuahuan Biotic Province and the Tamaulipeca Province. Therefore, the aim of this study is to describe the biogeographic patterns of the mammals that occur in the CCB to determine whether this site was an important area of refuge during the Pleistocene’s climate pulses and to deepen our knowledge of the mammalian biota of the CCB. We obtained ecological niche models (ENMs) and projected them into past environmental conditions, Last Glacial Maximum (LGM) and Last Interglacial (LIG), to determine whether this area could have constituted a refuge area for mammalian species. A review of the phylogeographic studies on these species to determine whether or not the CCB could have been a Pleistocene refuge for mammalian species was also conducted. Accordingly, we expect that species that found refuge in the CCB will show high genetic variation in this area, while species that were not present in the area during the Pleistocene will show lower levels of genetic variation. According to our results, the CCB was an important area of refuge during Pleistocene climatic changes, specifically over the Sierra la Madera and Sierra San Marcos. Most mammalian species of the CCB are widespread. Results from past ENMs and phylogeographic analyses were consistent, except for five species of rodents, which did not conform to the expected patterns of genetic diversity and changes in their distribution. Most reviewed analyses failed to include an adequate sample size for Mexican populations. Therefore, conducting phylogeographic studies of these mammals in the CD is fundamental for understanding the dynamics that determined its biodiversity.

Keywords

Ecological niche models Chihuahuan Desert Pleistocene refugia Phylogeography 

Notes

Acknowledgements

Special thanks to V. Souza and L.E. Eguiarte for supporting this research. Also, we thank the Laboratorio de Evolución Molecular y Experimental Instituto de Ecología (IE) UNAM and its technicians E. Aguirre-Planter and L. Espinosa-Asuar, and E. Scheinvar and S. Barrientos for their help in logistic and/or help in conducting the analyses.

References

  1. Abell RA, Olson DM, Dinerstein E, Hurley PT, Eichbaum W, Diggs JT, Walters S, Wettengel W, Allnutt T, Loucks CJ, Hedao P, Taylor C (2000) Freshwater ecoregions of North America: a conservation assessment, vol 2. Island Press, Washington, DCGoogle Scholar
  2. Andersen JJ, Light JE (2012) Phylogeography and subspecies revision of the hispid pocket mouse, Chaetodipus hispidus (Rodentia: Heteromyidae). J Mammal 93:1195–1215CrossRefGoogle Scholar
  3. Arnold BD, Wilkinson GS (2015) Female natal philopatry and gene flow between divergent clades of pallid bats (Antrozous pallidus). J Mammal 96:531–540CrossRefGoogle Scholar
  4. Booth GD, Niccolucci MJ, Schuster EG (1994) Identifying proxy sets in multiple linear regression: an aid to better coefficient interpretation. INT-470 United States Department of Agriculture Forest Service, OgdenGoogle Scholar
  5. Bradley RD, Henson DD, Durish ND (2008) Re-evaluation of the geographic distribution and phylogeography of the Sigmodon hispidus complex based on mitochondrial DNA sequences. Southwest Nat 53:301–310CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carstens BC, Richards CL (2007) Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution 61(6):1439–1454CrossRefPubMedGoogle Scholar
  7. Castellanos-Morales G, Gámez N, Castillo-Gámez RA, Eguiarte LE (2016) Peripatric speciation of an endemic species driven by Pleistocene climate change: the case of the Mexican prairie dog (Cynomys mexicanus). Mol Phylogenet Evol 94:171–181CrossRefPubMedGoogle Scholar
  8. CONABIO (1997) Provincias fisiograficas de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México. http://conabioweb.conabio.gob Google Scholar
  9. Contreras-Balderas AJ, Hafner DJ, Lopez-Soto JH, Torres-Ayala JM, Contreras-Arquieta JH (2007) Mammals of the Cuatro Ciénegas Basin, Coahuila, Mexico. Southwest Nat 52(3):400–409CrossRefGoogle Scholar
  10. De la Rosa-Reyna XF, Calderón-Lobato RD, Parra-Bracamonte GM, Sifuentes-Rincón AM, DeYoung RW, García-De León FJ, Arellanos-Vera W (2012) Genetic diversity and structure among subspecies of white-tailed deer in Mexico. J Mammal 93:1158–1168CrossRefGoogle Scholar
  11. Dragoo JW, Lackey JA, Moore KE, Lessa EP, Cook JA, Yates TL (2006) Phylogeography of the deer mouse (Peromyscus maniculatus) provides a predictive framework for research on hantaviruses. J Gen Virol 87:1997–2003CrossRefPubMedGoogle Scholar
  12. Elias SA, Van Devender TR, De Baca R (1995) Insect fossil evidence of late glacial and Holocene environments in the Bolson de Mapimi, Chihuahuan Desert, Mexico: comparisons with the paleobotanical record. PALAIOS:454–464CrossRefGoogle Scholar
  13. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  14. Escalante AE, Eguiarte LE, Espinosa-Asuar L, Forney LJ, Noguez AM, Souza-Saldivar V (2008) Diversity of aquatic prokaryotic communities in the Cuatro Cienegas basin. FEMS Microbiol Ecol 65:50–60CrossRefPubMedGoogle Scholar
  15. Gámez N, Escalante T, Espinosa D, Eguiarte LE, Morrone J (2014) Temporal dynamics of areas of endemism under climate change: a case study of Mexican Bursera (Burseraceae). J Biogeogr 41(5):871–881CrossRefGoogle Scholar
  16. Hafner JC, Upham NS, Reddington E, Torres CW (2008) Phylogeography of the pallid kangaroo mouse, Microdipodops pallidus: a sand obligate endemic of the Great Basin, western North America. J Biogeogr 35:2102–2118CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hernández HM, Gómez-Hinostrosa C, Bárcenas RT (2001) Diversity, spatial arrangement, and endemism of Cactaceae in the Huizache area, a hot-spot in the Chihuahuan Desert. Biodivers Conserv 10:1097–1112CrossRefGoogle Scholar
  18. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological niche factor analysis: how to compute habitat suitability maps without absence data? Ecology 83:2027–2036CrossRefGoogle Scholar
  19. Hidalgo-Mihart MG, Cantú-Salazar L, González-Romero A, López-González CA (2004) Historical and present patterns of coyote (Canis latrans) in Mexico and Central America. J Biogeogr 31:2025–2038CrossRefGoogle Scholar
  20. Holmgren CA, Betancourt JL, Peñalba MC, Delgadillo J, Zuravnsky K, Hunter KL, Rylander KA, Weiss JL (2014) Evidence against a Pleistocene desert refugium in the Lower Colorado River Basin. J Biogeogr 41:1769–1780CrossRefGoogle Scholar
  21. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  22. Jezkova T, Riddle BR, Card DC, Schield DR, Eckstut ME, Castoe TA (2015) Genetic consequences of postglacial range expansion in two codistributed rodents (genus Dipodomys) depend on ecology and genetic locus. Mol Ecol 24:83–97CrossRefPubMedGoogle Scholar
  23. Kierepka EM, Latch EK (2016) High gene flow in the American badger overrides habitat preferences and limits broadscale genetic structure. Mol Ecol 25:6055–6076CrossRefPubMedGoogle Scholar
  24. Koblmüller S, Wayne RK, Leonard JA (2012) Impact of Quaternary climatic changes and interspecific competition on the demographic history of a highly mobile generalist carnivore, the coyote. Biol Lett 8:644–647CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mantooth SJ, Hafner DJ, Bryson RW Jr, Riddle BR (2013) Phylogeographic diversification of antelope squirrels (Ammospermophilus) across North American deserts. Biol J Linn Soc 109:949–967CrossRefGoogle Scholar
  26. Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson B (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. J Biogeogr 42:1586–1600CrossRefGoogle Scholar
  27. Mendez-Harclerode FM, Strauss RE, Fulhorst CF, Milazzo ML, Ruthven DC III, Bradley RD (2007) Molecular evidence for high levels of intrapopulation genetic diversity in woodrats (Neotoma micropus). J Mammal 88:360–370CrossRefPubMedPubMedCentralGoogle Scholar
  28. Metcalf AL (1977) Some Quaternary molluscan faunas from the northern Chihuahuan Desert and their paleoecological implications. In: Wauer RH, Riskind DH (eds) Trans-actions of the Symposium on the Biological Resources of the Chihuahuan Desert, Proc Trans Ser, vol 3. Nat Park Serv, pp 1–658Google Scholar
  29. Meyer ER (1973) Late Quaternary paleoecology of the Cuatro Cienegas Basin, Coahuila, Mexico. Ecology 54:982–995CrossRefGoogle Scholar
  30. Morafka DJ (1977) Is there a Chihuahuan Desert? A quantitative evaluation through a herpetofaunal perspective. In: Transactions of the symposium on the biological resources of the Chihuahuan Desert region. United States and Mexico. National Park Service, Washington, DC, pp 437–454Google Scholar
  31. Moritz C, Hoskin CJ, MacKenzie JB, Phillips BL, Tonione M, Silva N, VanDerWal J, Williams SE, Graham CH (2009) Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc R Soc B 276:1235–1244CrossRefPubMedGoogle Scholar
  32. Moreno-Letelier A, Piñero D (2009) Phylogeographic structure of Pinus strobiformis Engelm. across the Chihuahuan Desert filter-barrier. J Biogeog 36:121–131CrossRefGoogle Scholar
  33. Nava-García E, Guerrero-Enríquez J, Arellano E (2016) Molecular phylogeography of harvest mice (Reithrodontomys megalotis) based on cytochrome b DNA sequences. J Mamm Evol 23:297–307CrossRefGoogle Scholar
  34. Olson DM, Dinerstein E (2002) The global 200: priority ecoregions for global conservation. Ann Mo Bot Gard 89:199–224CrossRefGoogle Scholar
  35. Piaggio AJ, Perkins SL (2005) Molecular phylogeny of North American long-eared bats (Vespertilionidae: Corynorhinus); inter and intraspecific relationships inferred from mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 37:762–775CrossRefPubMedGoogle Scholar
  36. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259CrossRefGoogle Scholar
  37. Ramírez-Barahona S, Eguiarte LE (2013) The role of glacial cycles in promoting genetic diversity in the Neotropics: the case of cloud forests during the Last Glacial Maximum. Ecol Evol 3:725–738CrossRefPubMedPubMedCentralGoogle Scholar
  38. Riddle BR, Hafner DJ, Alexander LF (2000) Phylogeography and systematics of the Peromyscus eremicus species group and the historical biogeography of North American warm regional deserts. Mol Phylogenet Evol 17:145–160CrossRefPubMedGoogle Scholar
  39. Reding DM, Bronikowski AM, Johnson WE, Clark WR (2012) Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Linx rufus). Mol Ecol 21:3078–3093CrossRefPubMedGoogle Scholar
  40. Russell AL, Medellin RA, McCracken GF (2005) Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Mol Ecol 14:2207–2222CrossRefPubMedGoogle Scholar
  41. Scheinvar E, Gámez N, Castellanos-Morales G, Aguirre-Planter E, Eguiarte LE (2017) Neogene and Pleistocene history of Agave lechuguilla in the Chihuahuan Desert. J Biogeogr 44:322–334CrossRefGoogle Scholar
  42. Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodríguez-Martínez JM, Soberón X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Nat Acad Sci U S A 103:6565–6570CrossRefGoogle Scholar
  43. Swenson NG, Howard DJ (2005) Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. Am Nat 166:581–591CrossRefPubMedGoogle Scholar
  44. Turmelle AS, Kunz TH, Sorenson MD (2011) A tale of two genomes: contrasting patterns of phylogeographic structure in a widely distributed bat. Mol Ecol 20:357–375CrossRefPubMedGoogle Scholar
  45. Van Devender TR, Burgess TL (1985) Late Pleistocene woodlands in the Bolson de Mapimi: a refugium for the Chihuahuan Desert biota? Quat Res 24:346–353CrossRefGoogle Scholar
  46. Waltari E, Hijmans RJ, Peterson AT, Nyári AS, Perkins SL, Guralnick RP (2007) Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS One 2(7):e563CrossRefPubMedPubMedCentralGoogle Scholar
  47. Weyandt SE, Van Den Bussche RA (2007) Phylogeographic structuring and volant mammals: the case of the pallid bat (Antrozous pallidus). J Biogeogr 34:1233–1245CrossRefGoogle Scholar
  48. Wickliffe JK, Bradley RD, Stangl FB Jr, Patton JL, Parish DA, Jones C, Schmidly DJ, Baker RJ (2004) Molecular systematics and phylogeographic history of Thomomys bottae in Texas. In: Sánchez-Cordero V, Medellín RA (eds) Contribuciones mastozoológicas en homenaje a Bernardo Villa. Instituto de Biología e Instituto de Ecología, UNAM, México, pp 497–512Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Niza Gámez
    • 1
  • Gabriela Castellanos-Morales
    • 2
  1. 1.Facultad de Estudios Superiores, ZaragozaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Departamento de Conservación de la BiodiversidadEl Colegio de la Frontera Sur-VillahermosaVillahermosaMexico

Personalised recommendations