Advertisement

Nutrient Biogeochemistry of Urban Systems

  • Dennis P. SwaneyEmail author
Chapter

Abstract

This chapter highlights some of the features of nutrient flows through urban areas. Cities represent foci of human activity and are thus centers of resource consumption. Anthropogenic contributions of nutrients (mainly nitrogen (N) and phosphorus (P)), and especially their consumption as food in urban areas, are associated with nutrient loads in human waste, which is channeled to waste treatment facilities, to landfills, and, ultimately, to the regional environment. Other significant contributions include atmospheric N deposition associated with industrial and vehicular combustion processes and N and P fertilizer applied to urban lawns and gardens. The concentration of these nutrients in urban regions, combined with their rapid movement in water flows facilitated by the impervious surfaces and drainage networks of cities, results in high nutrient loads to local and regional waters. Intensification of storm events in future climate scenarios should exacerbate potential nutrient flows from cities. High N and P loads, especially when out of balance with other nutrients such as silicon (Si), represent problems for water quality management.

Keywords

Urban ecosystem Stormwater Nitrogen Phosphorus Silicon Ecosystem metabolism Foodshed 

Notes

Acknowledgments

I thank Karin Limburg for her careful reading of the manuscript and her suggestions, which improved the final version.

Supplementary material

458872_1_En_9_MOESM1_ESM.docx (164 kb)
Field_Exercise_7_NitrogenFlux In the Urban Ecosystem (DOCX 165 KB)

References

  1. 1.
    Howarth RW, Billen G, Swaney DP, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu Z-L (1996) Riverine inputs of nitrogen to the North Atlantic Ocean: fluxes and human influences. Biogeochemistry 35:75–139CrossRefGoogle Scholar
  2. 2.
    Hong B, Swaney DP, Howarth RW (2011) A toolbox for calculating net anthropogenic nitrogen inputs (NANI). Environ Model Softw 26(5):623–633CrossRefGoogle Scholar
  3. 3.
    Russell MJ, Weller DE, Jordan TE, Sigwart KJ, Sullivan KJ (2008) Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88(3):285–304CrossRefGoogle Scholar
  4. 4.
    Billen G, Garnier J, Mouchel JM, Silvestre M (2007) The Seine system: introduction to a multidisciplinary approach of the functioning of a regional river system. Sci Total Environ 375(1–3):1–12CrossRefGoogle Scholar
  5. 5.
    Han Y, Li X, Nan Z (2011) Net anthropogenic phosphorus accumulation in the Beijing metropolitan region. Ecosystems 14(3):445–457CrossRefGoogle Scholar
  6. 6.
    Han Y, Li X, Nan Z (2011) Net anthropogenic nitrogen accumulation in the Beijing metropolitan region. Environ Sci Pollut Res 18(3):485–496CrossRefGoogle Scholar
  7. 7.
    Howarth R, Swaney D, Billen G, Garnier J, Hong B, Humborg C, Johnes P, Mörth CM, Marino R (2012) Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front Ecol Environ 10(1):37–43CrossRefGoogle Scholar
  8. 8.
    Hong B, Swaney DP, McCrackin M, Svanbäck A, Humborg C, Gustafsson B, Yershova A, Pakhomau A (2017) Advances in NANI and NAPI accounting for the Baltic drainage basin: spatial and temporal trends and relationships to watershed TN and TP fluxes. Biogeochemistry 133(3):245–261CrossRefGoogle Scholar
  9. 9.
    Billen G, Barles S, Garnier J, Rouillard J, Benoit P (2009) The food-print of Paris: long-term reconstruction of the nitrogen flows imported into the city from its rural hinterland. Reg Environ Chang 9(1):13–24CrossRefGoogle Scholar
  10. 10.
    Billen G, Barles S, Chatzimpiros P, Garnier J (2012) Grain meat and vegetables to feed Paris: where did and do they come from? Localising Paris food supply areas from the eighteenth to the twenty-first century. Reg Environ Chang 12(2):325–335CrossRefGoogle Scholar
  11. 11.
    Swaney DP, Santoro RL, Howarth RW, Hong B, Donaghy KP (2012) Historical changes in the food and water supply systems of the New York City Metropolitan Area. Reg Environ Chang 12(2):363–380CrossRefGoogle Scholar
  12. 12.
    Kennedy C, Cuddihy J, Engel-Yan J (2007) The changing metabolism of cities. J Ind Ecol 11(2):43–59CrossRefGoogle Scholar
  13. 13.
    Hedden WP (1929) How great cities are fed. DC Heath & Co, New YorkGoogle Scholar
  14. 14.
    Bricker S, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2007) Effects of Nutrient Enrichment In the Nation’s Estuaries: A Decade of Change. In: NOAA Coastal Ocean Program Decision Analysis Series, No 26. National Centers for Coastal Ocean Science, Silver SpringGoogle Scholar
  15. 15.
    Kaushal SS, Belt KT (2012) The urban watershed continuum: evolving spatial and temporal dimensions. Urban Ecosyst 15:409–435CrossRefGoogle Scholar
  16. 16.
    Schlesinger WH (1997) Biogeochemistry – An analysis of global change, 2nd edn. Academic Press, San DiegoGoogle Scholar
  17. 17.
    Klein RD (1990) Protecting the Aquatic Environment from the Effects of Golf Courses. Community and Environmental Defense Association, Maryland LineGoogle Scholar
  18. 18.
    Law LN, Band EL, Grove JM (2004) Nitrogen input from residential lawn care practices in suburban watersheds in Baltimore County, MD. J Environ Plann Man 47:737–755CrossRefGoogle Scholar
  19. 19.
    Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM (2004) Nitrogen cycles: past present and future. Biogeochemistry 70(2):153–226CrossRefGoogle Scholar
  20. 20.
    Smil V (2001) Enriching the Earth: Fritz Haber Carl Bosch and the Transformation of World Food Production. MIT Press, CambridgeGoogle Scholar
  21. 21.
    Wallgren C (2006) Local or global food markets: a comparison of energy use for transport. Local Environ 11(2):233–251CrossRefGoogle Scholar
  22. 22.
    Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42(10):3508–3513CrossRefGoogle Scholar
  23. 23.
    US Dept of Transportation (2005) Assessing the Effects of Freight Movement on Air Quality at the National and Regional Level, Final Report, April, 2005. Prepared for US Federal Highway Administration Office of Natural and Human Environment. Washington, DC. https://www.fhwa.dot.gov/Environment/air_quality/research/effects_of_freight_movement/chapter00.cfm. Accessed 2 Nov 2018
  24. 24.
    Ruttenberg KC (2003) The global phosphorus cycle. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, vol 8. Elsevier, Amsterdam, p 585CrossRefGoogle Scholar
  25. 25.
    Durr HH, Meybeck M, Hartmann J, Laruelle GG, Roubeix V (2011) Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences 8:597–620CrossRefGoogle Scholar
  26. 26.
    Carey JC, Fulweiler RW (2012) Human activities directly alter watershed dissolved silica fluxes. Biogeochemistry 111(1–3):125–138CrossRefGoogle Scholar
  27. 27.
    Sferratore A, Garnier J, Billen G, Conley DJ, Pinault S (2006) Diffuse and point sources of silica in the Seine River watershed. Environ Sci Technol 40:6630–6635CrossRefGoogle Scholar
  28. 28.
    Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21(4):192–199CrossRefGoogle Scholar
  29. 29.
    Kaushal S, Groffman PM, Band LE, Elliott EM, Shields CA, Kendall C (2011) Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ Sci Technol 45:8225–8232CrossRefGoogle Scholar
  30. 30.
    McShane C, Tarr JA (2007) The horse in the city: living machines in the nineteenth century. Johns Hopkins University Press, BaltimoreGoogle Scholar
  31. 31.
    Baker L, Hope AD, Xu Y, Edmonds J, Lauver L (2001) Nitrogen balance for the central Arizona-Phoenix (CAP) ecosystem. Ecosystems 4:582–602CrossRefGoogle Scholar
  32. 32.
    Wollheim WM, Pellerin BA, Vörösmarty CJ, Hopkinson CS (2005) N retention in urbanizing headwater catchments. Ecosystems 8(8):871–884CrossRefGoogle Scholar
  33. 33.
    Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. AIBS Bull 53(4):341–356Google Scholar
  34. 34.
    Tarr JA (1996) The search for the ultimate sink: urban pollution in historical perspective. The University of Akron Press, AkronGoogle Scholar
  35. 35.
    Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater Engineering Treatment and Reuse, 4th edn. McGraw Hill Higher Education, BostonGoogle Scholar
  36. 36.
    Center for Watershed Protection (2010) New York State Stormwater Management Design Manual, Prepared for NY Dept of Environmental Conservation. Center for Watershed Protection, Ellicott City. http://www.decnygov/docs/water_pdf/swdm(2010)entirepdf. Accessed 2 Nov 2018Google Scholar
  37. 37.
    Kaushal SS, Groffman PM, Band LE, Shields CA, Morgan RP, Palmer MA, Belt KT, Swan CM, Findlay SE, Fisher GT (2008) Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environ Sci Technol 42(16):5872–5878CrossRefGoogle Scholar
  38. 38.
    Groffman PM, Law NL, Belt KT, Band LE, Fisher GT (2004) Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7(4):393–403CrossRefGoogle Scholar

Further Reading

  1. Cronon W (1991) Nature’s metropolis: Chicago and the Great West. WW Norton, New YorkGoogle Scholar
  2. Færge J, Magid J, de Vries FWP (2001) Urban nutrient balance for Bangkok. Ecol Model 139(1):63–74CrossRefGoogle Scholar
  3. Fissore C, Baker LA, Hobbie SE, King JY, McFadden JP, Nelson KC, Jakobsdottir I (2011) Carbon, nitrogen, and phosphorus fluxes in household ecosystems in the Minneapolis-Saint Paul, Minnesota, urban region. Ecol Appl 21(3):619–639CrossRefGoogle Scholar
  4. Fissore C, Hobbie SE, King JY, McFadden JP, Nelson KC, Baker LA (2012) The residential landscape: fluxes of elements and the role of household decisions. Urban Ecosyst 15(1):1–18CrossRefGoogle Scholar
  5. Forkes J (2007) Nitrogen balance for the urban food metabolism of Toronto, Canada. Resour Conserv Recy 52(1):74–94CrossRefGoogle Scholar
  6. Wolman A (1965) The metabolism of cities. Sci Am 213(3):179–190CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA

Personalised recommendations