Advertisement

The Biological System: Plants in the Urban Environment

  • Myrna H. P. HallEmail author
Chapter

Abstract

This chapter reviews the importance of plants to the urban environment. It summarizes the conditions to which plants are subjected in the urban environment and some of the benefits they provide both physically through cleaning air and water and psychologically. It reviews briefly the history of urban flora studies and the most common spatial sampling designs used by researchers to document urban plant species over time. While the majority of past research has focused on taxonomic cataloging of the species found in cities, with a particular emphasis on native versus non-native, current urban plant ecology research questions revolve around the novel ecosystems being created in urban areas, evolution and physiological adaptation, and the role of human attitudes. Finally, we offer an energetics-based approach to understand species presence and absence as a function of their metabolic adaptation to multiple environmental gradients encountered across a heterogeneous urban landscape. Such knowledge, we propose, can help city planners, landscape architects, and citizens preserve urban ecosystem biotic structure and function in a changing world.

Keywords

Urban flora Rural to urban gradients Environmental gradients Natural analog Optimum ecological space Novel ecosystems 

Notes

Acknowledgement

Thank you to Dr. Ariel Lugo, forest ecologist, and Dr. Catherine Landis, botanist, for their thoughtful, probing, and insightful reviews that helped shape and enrich this chapter.

Supplementary material

458872_1_En_11_MOESM1_ESM.docx (507 kb)
Field_Exercise_9_Plants in the Urban Environment (DOCX 508 KB)

References

  1. 1.
    Hughes JD (2009) An environmental history of the world: humankind’s changing role in the community of life, 2nd edn. Routledge, LondonCrossRefGoogle Scholar
  2. 2.
    Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Shahid N, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  3. 3.
    Kuo FE, Sullivan SW (2001) Environment and crime in the inner city: does vegetation reduce crime? Environ Behav 33(3):343–367Google Scholar
  4. 4.
    Ulrich R (1984) View through a window may influence recovery from surgery. Science 224:420–421CrossRefGoogle Scholar
  5. 5.
    Velarde MD, Fry G, Tveit M (2007) Health effects of viewing landscapes – landscape types in environmental psychology. Urban For Urban Green 6(4):199–212CrossRefGoogle Scholar
  6. 6.
    Louv R (2008) Last child in the woods: saving our children from nature-deficit disorder. Algonquin Books, Chapel HillGoogle Scholar
  7. 7.
    Hall S, Huber D, Grimm N (2008) Soil N2O and NO emissions from an arid, urban ecosystem. J Geophys Res 113:G01016.  https://doi.org/10.1029/2007JG000523CrossRefGoogle Scholar
  8. 8.
    Groffman P, Neely L, Belt K, Band L, Fisher G (2004) Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7:393–403Google Scholar
  9. 9.
    Cusak D (2013) Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient. Soil Biol Biochem 57:192–203CrossRefGoogle Scholar
  10. 10.
    Nowak DJ, Rowntree RA, McPherson EG, Sisinni SM, Kirkmann ER, Stevens JC (1996) Measuring and analyzing urban tree cover. Landsc Urban Plan 36(1):49–57CrossRefGoogle Scholar
  11. 11.
    Nowak DJ, Noble MH, Sisinni SM, Dwyer JF (2001) Assessing the US urban forest resources. J Forest 99(3):37–42Google Scholar
  12. 12.
    Müller N (2010) Most frequently occurring vascular plants and the role of non-native species in urban areas – a comparison of selected cities of the old and new worlds. In: Müller N, Werner P, Kelcey JG (eds) Urban biodiversity and design. Blackwell, Hoboken, pp 227–242CrossRefGoogle Scholar
  13. 13.
    Gilbert OL (1999) The ecology of urban habitats. Springer, DordrechtGoogle Scholar
  14. 14.
    Dubos R (1968) So human an animal. Charles Scribner, New YorkGoogle Scholar
  15. 15.
    Ignatieva M, Stewart G (2009) Homogeneity of urban biotopes and similarity of landscape design language in former colonial cities. In: McDonnell MH, Hahs AK, Breuste JH (eds) Ecology of cities and towns: a comparative approach. Cambridge University Press, Cambridge, pp 399–421CrossRefGoogle Scholar
  16. 16.
    Steinberg T (2006) American green: the obsessive quest for the perfect lawn. W.W. Norton, New YorkGoogle Scholar
  17. 17.
    Greis C, Hope D, Zhu W, Fagan WF, Redman CL, Grimm NB et al (2003) Socioeconomics drive urban plant diversity. PNAS 100(15):8788–8792CrossRefGoogle Scholar
  18. 18.
    Pearse WD, Cavender-Bares J, Hobbie SE, Avolio ML, Bettez N, Chowdury RR et al (2018) Homogenization of plant diversity, composition, and structure in north American urban yards. Ecosphere 9(2):e02105.  https://doi.org/10.1002/ecs2.2105CrossRefGoogle Scholar
  19. 19.
    Ignatieva M (2011) Plant material for urban landscapes in the era of globalisation: roots, challenges, and innovative solutions. In: Richter M, Weiland U (eds) Applied urban ecology: a global framework. Blackwell Publishing, Hoboken, pp 139–161CrossRefGoogle Scholar
  20. 20.
    Panarolis D (1643) Plantarum amphitheatralium catalogus. Typis Dominici Marciani, RomeGoogle Scholar
  21. 21.
    Schouw J (1823) Grundtræk til en almindelig Plantegeographie (Foundations to a general geography of plants). Gyldendalske Boghandels Forlag Copenhagen, CopenhagenGoogle Scholar
  22. 22.
    Chamisso AV (1827) Übersicht der nutzbarsten und der schädlichsten Gewächse, welche wild oder angebaut in Norddeutschland vorkommen. In: Nebst Ansichten von der Pflanzenkunde und dem Pflanzenreiche. Ferdinand Dümmler, Berlin, p 376. Source: Sukopp, 48Google Scholar
  23. 23.
    Celka Z (2011) Relics of cultivation in the vascular flora of medieval west Slavic settlements and castles. Biodivers Res Conserv 22(1):1–110.  https://doi.org/10.2478/v10119-011-0011-0CrossRefGoogle Scholar
  24. 24.
    Müller N, Ignatieva M, Nilon CH, Werner P, Zipperer WC (2013) Patterns and trends in urban biodiversity and landscape design. In: Elmqvist T et al (eds) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, DordrechtGoogle Scholar
  25. 25.
    Murphy DJ, Hall MH, Hall CA, Heisler GM, Stehman SV, Anselmo C (2011) The relationship between land cover and the urban heat island in northeastern Puerto Rico. Int J Climatol 31:1222–1239CrossRefGoogle Scholar
  26. 26.
    Ramenski LG (1928) On the method of comparative treatment and systematization of lists of plants and other objects determined by several factors with unlike actions (In Russian). In: Trudy Sovesch, geobot.-lugov., sozvan. (Gos.) lugovoi Inst, p 15–20Google Scholar
  27. 27.
    Ramenski L (1924) Basic regularities of vegetation covers and their study In Russian. In: Ob.-Voronezh: Vestnik Opytnogo de la Stredne-Chernoz, p 37–73Google Scholar
  28. 28.
    Godefroid S, Koedam N (2003) Distribution pattern of the flora in a peri-urban forest: an effect of the city-forest ecotone. Landsc Urban Plan 65:169–185CrossRefGoogle Scholar
  29. 29.
    Richards NA, Mallette JR, Simpson RJ, Macie EA (1984) Residential Greenspace and vegetation in a Mature City: Syracuse, New York. Urban Ecol 8:99–125CrossRefGoogle Scholar
  30. 30.
    Palmer JF (1984) Neighborhoods as stands in the urban forest. Urban Ecol 8:299–241Google Scholar
  31. 31.
    US Forest Service FIA (2018) Forest inventory and analysis national program. https://www.fia.fs.fed.us/. Accessed 11 Mar 2018
  32. 32.
    Ramenski LG (1938) Introduction to the complex soil-geobotanical investigation of lands. Selkhozgiz, MoscowGoogle Scholar
  33. 33.
    Grime JP (1979) Plant strategies and vegetation processes. Wiley, ChichesterGoogle Scholar
  34. 34.
    Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, WashingtonCrossRefGoogle Scholar
  35. 35.
    Gleason HA (1926) The individualistic concept of the plant association. The Bulletin of the Torrey Botanical Club, New YorkCrossRefGoogle Scholar
  36. 36.
    Sukopp H (2003) Flora and vegetation reflecting the urban history of Berlin. Erde 3:295–316Google Scholar
  37. 37.
    Given D, Spellerberg I (eds) (2004) Going native: making use of New Zealand plants. Canterbury University Press, ChristchurchGoogle Scholar
  38. 38.
    Del Tredici P (2010) Spontaneous urban vegetation: reflections of change in a globalized world. Nat Cult 5(3):299–315.  https://doi.org/10.3167/nc.2010.050305CrossRefGoogle Scholar
  39. 39.
    Tallamy DW, Shropshire KJ (2009) Ranking Lepidopteran use of native versus introduced plants. Cons Bio 23(4):941–947.  https://doi.org/10.1111/j.1523-1739.2009.01202.xCrossRefGoogle Scholar
  40. 40.
    Bleeker W, Schmitz U, Ristow M (2007) Interspecific hybridization between alien and native plant species in Germany and its consequences for native biodiversity. Biol Conserv 137:248–253CrossRefGoogle Scholar
  41. 41.
    White OE, Bowden WM (1947) Oriental and American bittersweet hybrids. J Hered 38(4):125–128CrossRefGoogle Scholar
  42. 42.
    Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants. Biolog Invasions 11:1093–1105CrossRefGoogle Scholar
  43. 43.
    Donihue CM, Lambert MR (2015) Adaptive evolution in urban ecosystems. Ambio 44:194–203.  https://doi.org/10.1007/s13280-014-0547-2CrossRefPubMedGoogle Scholar
  44. 44.
    Brune M (2016) Urban trees under climate change: potential impacts of dry spells and heat waves in three German regions in the 2050s. Climate Service Center Germany, Hamburg. Report No.: 24Google Scholar
  45. 45.
    Baptiste A, Foley C, Smardon R (2015) Understanding urban neighborhood differences in willingness to implement green infrastructure measures: a case study of Syracuse, NY. Landsc Urban Plan 136:1–12CrossRefGoogle Scholar
  46. 46.
    Sun N, Hall M (2016) Coupling human preferences with biophysical processes: modeling the effect of citizen attitudes on potential urban stormwater runoff. Urban Ecosyst 19(4):1433–1454.  https://doi.org/10.1007/s11252-013-0304-5CrossRefGoogle Scholar
  47. 47.
    Melendez-Ackerman EJ, Nytch CJ, Santiago-Acevedo LE, Verdejo-Ortiz JC, Bartolomei RS, Ramos-Santiago LE et al (2016) Synthesis of household yard area dynamics in the City of San Juan using multi-scalar social-ecological perspectives. Sustainability 8(5):481.  https://doi.org/10.3390/su8050481CrossRefGoogle Scholar
  48. 48.
    Hall CAS, Stanford J, Hauer R (1992) The distribution and abundance of organisms as a consequence of energy balances along multiple environmental gradients. Oikos 65(3):377–390CrossRefGoogle Scholar
  49. 49.
    Whittaker RH (1967) Gradient analysis of vegetation. Biol Rev 49:207–264.  https://doi.org/10.1111/j.1469-185X.1967.tb01419.xCrossRefGoogle Scholar
  50. 50.
    Craul PJ (1999) Urban soils: applications and practices. Wiley, New YorkGoogle Scholar
  51. 51.
    Smith BA (1943) A tree grows in Brooklyn. Harper & Brothers, New YorkGoogle Scholar
  52. 52.
    Kowarik I (2003) Biologische Invasionen – Neophyten und Neozoen in Mitteleuropa (in German). Verlag Eugen Ulmer, Stuttgart. ISBN 3-8001-3924-3 (Source: Wikipedia, https://en.wikipedia.org/wiki/Ailanthus_altissima. Accessed 21 Oct 2018Google Scholar
  53. 53.
    Duncan RP, Clemants SE, Corlett RT, Hahs AK, McCarthy MA, McDonnell MJ et al (2011) Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Glob Ecol Biogeogr 20:509–519CrossRefGoogle Scholar
  54. 54.
    Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983.  https://doi.org/10.1016/j.envpol.2011.02.022CrossRefPubMedGoogle Scholar
  55. 55.
    Lugo AE, Brandeis TJ (2005) New mix of alien and native species coexists in Puerto Rico’s landscapes. In: Burslem DFRP, Pinard MA, Hartley SE (eds) Biotic interactions in the tropics: their role in the maintenance of species diversity. Cambridge University Press, Cambridge, pp 484–509CrossRefGoogle Scholar
  56. 56.
    Pyšek P (1995) Approaches to studying spontaneous settlement flora and vegetation in Central Europe: a review. In: Sukopp H, Numata M, Huber A (eds) Urban ecology as the basis of urban planning. SPB Academic Publ, Amsterdam, pp 23–39Google Scholar
  57. 57.
    Lugo AE (2010) Let’s not forget biodiversity of the cities. Biotropica 42(5):576–577CrossRefGoogle Scholar
  58. 58.
    Lugo AE, Winchell KM, Carlo TA (2018) Novelty in ecosystems. In: DellaSala DA, Goldstein MI (eds) The encyclopedia of the anthropocene, vol 3. Elsevier, Oxford, pp 259–271CrossRefGoogle Scholar
  59. 59.
    Craul TA, Craul PJ (2006) Introduction to the soil. In: Craul TA, Craul PJ (eds) Soil design protocols for landscape architects and contractors. Wiley, New York, pp 1–28Google Scholar
  60. 60.
    Palmer MW (2018) Ordination methods for ecologists: Oklahoma: Oklahoma State University, Botany Department., http://ordination.okstate.edu/COENOSPA.htm. Accessed 24 Oct 2018
  61. 61.
    Theophrastus (1916) Enquiry into Plants, Vol. 1, Books 1–5. Translated by A. F. Hort, 1916. Loeb Classical Library 70. Harvard University Press, CambridgeGoogle Scholar
  62. 62.
    Wulf A (2015) The invention of nature: Alexander Von Humboldt’s New World. Vantage, New YorkGoogle Scholar
  63. 63.
    Whittaker R (1956) Vegetation of the Great Smoky Mountains. Ecol Monogr 26(1):1–80.  https://doi.org/10.2307/1943577CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental StudiesSUNY College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations