Advertisement

Computational Terminology in eHealth

  • Federica VezzaniEmail author
  • Giorgio Maria Di Nunzio
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 988)

Abstract

In this paper, we present a methodology for the development of a new eHealth resource in the context of Computational Terminology. This resource, named TriMED, is a digital library of terminological records designed to satisfy the information needs of different categories of users within the healthcare field: patients, language professionals and physicians. TriMED offers a wide range of information for the purpose of simplification of medical language in terms of understandability and readability. Finally, we present two applications of our resource in order to conduct different types of studies in particular in Information Retrieval and Literature Analysis.

References

  1. 1.
    Ali, T., Schramm, D., Sokolova, M., Inkpen, D.: Can I hear you? Sentiment analysis on medical forums. In: IJCNLP, pp. 667–673 (2013)Google Scholar
  2. 2.
    Bouamor, D., Llanos, L.C., Ligozat, A., Rosset, S., Zweigenbaum, P.: Transfer-based learning-to-rank assessment of medical term technicality. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation, LREC 2016, Portorož, Slovenia, 23–28 May 2016 (2016)Google Scholar
  3. 3.
    Bourigault, D., Jacquemin, C., L’Homme, M.: Recent Advances in Computational Terminology. Natural Language Processing. J. Benjamins Publishing Company (2001). https://books.google.it/books?id=0eX8HtA7mQIC
  4. 4.
    de Buenaga, M., Maña, M., Gachet, D., Mata, J.: The SINAMED and ISIS projects: applying text mining techniques to improve access to a medical digital library. In: Gonzalo, J., Thanos, C., Verdejo, M.F., Carrasco, R.C. (eds.) ECDL 2006. LNCS, vol. 4172, pp. 548–551. Springer, Heidelberg (2006).  https://doi.org/10.1007/11863878_65CrossRefGoogle Scholar
  5. 5.
    Chang, W.: Shiny: Web Application Framework for R (2015). http://CRAN.R-project.org/package=shiny, r package version 0.11
  6. 6.
    Cimino, J.J.: Terminology tools: state of the art and practical lessons. Methods Inf. Med. 40(04), 298–306 (2001)CrossRefGoogle Scholar
  7. 7.
    Detmar, S.B., Muller, M.J., Schornagel, J.H., Wever, L.D., Aaronson, N.K.: Health-related quality-of-life assessments and patient-physician communication: a randomized controlled trial. JAMA 288(23), 3027–3034 (2002)CrossRefGoogle Scholar
  8. 8.
    Di Nunzio, G.M.: A study of an automatic stopping strategy for technologically assisted medical reviews. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 672–677. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76941-7_61CrossRefGoogle Scholar
  9. 9.
    Di Nunzio, G.M., Beghini, F., Vezzani, F., Henrot, G.: An interactive two-dimensional approach to query aspects rewriting in systematic reviews. IMS unipd at CLEF ehealth task 2. In: Working Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum, Dublin, Ireland, 11–14 September 2017 (2017). http://ceur-ws.org/Vol-1866/paper_119.pdf
  10. 10.
    Di Nunzio, G.M., Ciuffreda, G., Vezzani, F.: Interactive sampling for systematic reviews. IMS unipd at CLEF 2018 ehealth task 2. In: Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum, Avignon, France, 10–14 September 2018 (2018)Google Scholar
  11. 11.
    Di Nunzio, G.M., Vezzani, F.: Using R markdown for replicable experiments in evidence based medicine. In: Bellot, P., et al. (eds.) CLEF 2018. LNCS, vol. 11018, pp. 28–39. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98932-7_3CrossRefGoogle Scholar
  12. 12.
    DuBay, W.H.: The principles of readability. Online Submission (2004)Google Scholar
  13. 13.
    Elhadad, N., Sutaria, K.: Mining a lexicon of technical terms and lay equivalents. In: Proceedings of BioNLP Workshop, pp. 49–56. ACL (2007)Google Scholar
  14. 14.
    Epstein, R.M., et al.: Measuring patient-centered communication in patient-physician consultations: theoretical and practical issues. Soc. Sci. Med. 61(7), 1516–1528 (2005)CrossRefGoogle Scholar
  15. 15.
    Eysenbach, G.: Poverty, human development, and the role of ehealth. J. Med. Internet Res. 9(4), e34 (2007)CrossRefGoogle Scholar
  16. 16.
    Ferguson, L.A., Pawlak, R.: Health literacy: the road to improved health outcomes. J. Nurse Pract. 7(2), 123–129 (2011).  https://doi.org/10.1016/j.nurpra.2010.11.020. http://www.sciencedirect.com/science/article/pii/S1555415510005519CrossRefGoogle Scholar
  17. 17.
    Firth, J.R.: A synopsis of linguistic theory, 1930–1955. In: Studies in Linguistic Analysis (1957)Google Scholar
  18. 18.
    Gibbons, M.C.: eHealth Solutions for Healthcare Disparities, 1st edn. Springer Publishing Company, Incorporated, New York (2007)Google Scholar
  19. 19.
    Gouadec, D.: Terminologie: constitution des données. AFNOR gestion, AFNOR (1990). https://books.google.it/books?id=cRrnAAAAMAAJ
  20. 20.
    Grabar, N., Hamon, T.: A large rated lexicon with French medical words. In: LREC (Language Resources and Evaluation Conference) (2016)Google Scholar
  21. 21.
    Grabar, N., Van Zyk, I., De La Harpe, R., Hamon, T.: The comprehension of medical words. In: Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5, BIOSTEC 2014, pp. 334–342. SCITEPRESS - Science and Technology Publications, Lda, Portugal (2014).  https://doi.org/10.5220/0004803803340342
  22. 22.
    Grön, L., Bertels, A.: Clinical sublanguages: vocabulary structure and its impact on term weighting. Terminology 24(1), 41–65 (2018)CrossRefGoogle Scholar
  23. 23.
    Hliaoutakis, A., Varelas, G., Petrakis, E.G.M., Milios, E.: MedSearch: a retrieval system for medical information based on semantic similarity. In: Gonzalo, J., Thanos, C., Verdejo, M.F., Carrasco, R.C. (eds.) ECDL 2006. LNCS, vol. 4172, pp. 512–515. Springer, Heidelberg (2006).  https://doi.org/10.1007/11863878_56CrossRefGoogle Scholar
  24. 24.
    Jimison, H., et al.: Barriers and drivers of health information technology use for the elderly, chronically ill, and underserved. Evid Rep Technol Assess (Full Rep) 175, 1–1422 (2008)Google Scholar
  25. 25.
    Joo, S., Choi, Y.: Content analysis of social tags generated by health consumers. In: II, P.L.B., et al. (eds.) Proceedings of the 15th ACM/IEEE-CE Joint Conference on Digital Libraries, Knoxville, TN, USA, 21–25 June 2015, pp. 249–250. ACM (2015). http://doi.acm.org/10.1145/2756406.2756959
  26. 26.
    Keselman, A., Tse, T., Crowell, J., Browne, A., Ngo, L., Zeng, Q.: Assessing consumer health vocabulary familiarity: an exploratory study. J. Med. Internet Res. 9(1), e5 (2007)CrossRefGoogle Scholar
  27. 27.
    Klavans, J., Muresan, S.: Evaluation of DEFINDER: a system to mine definitions from consumer-oriented medical text. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, JCDL 2001, Roanoke, Virginia, USA, 24–28 June 2001, pp. 201–202. ACM (2001). http://doi.acm.org/10.1145/379437.379488
  28. 28.
    Lee, C.-H., Na, J.-C., Khoo, C.: Towards ontology enrichment with treatment relations extracted from medical abstracts. In: Sugimoto, S., Hunter, J., Rauber, A., Morishima, A. (eds.) ICADL 2006. LNCS, vol. 4312, pp. 419–428. Springer, Heidelberg (2006).  https://doi.org/10.1007/11931584_45CrossRefGoogle Scholar
  29. 29.
    Leroy, G., Endicott, J.E.: Term familiarity to indicate perceived and actual difficulty of text in medical digital libraries. In: Xing, C., Crestani, F., Rauber, A. (eds.) ICADL 2011. LNCS, vol. 7008, pp. 307–310. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24826-9_38CrossRefGoogle Scholar
  30. 30.
    Rouleau, M.: La terminologie médicale et ses problèmes. Tribuna, vol. IV, n. 12 (2003)Google Scholar
  31. 31.
    McCray, A.: Promoting health literacy. J. Am. Med. Infor. Ass. 12, 152–163 (2005)CrossRefGoogle Scholar
  32. 32.
    McKeown, K.R., Elhadad, N., Hatzivassiloglou, V.: Leveraging a common representation for personalized search and summarization in a medical digital library. In: Proceedings of the ACM/IEEE 2003 Joint Conference on Digital Libraries (JCDL 2003), 27–31 May 2003, Houston, Texas, USA, p. 159. IEEE Computer Society (2003).  https://doi.org/10.1109/JCDL.2003.1204856
  33. 33.
    Neveol, A., Grosjean, J., Darmoni, S., Zweigenbaum, P.: Language resources for French in the biomedical domain. In: Proceedings of the LREC 2014. ELRA, Reykjavik, Iceland, May 2014Google Scholar
  34. 34.
    Parker, R.M., et al.: Health literacy-report of the council on scientific affairs. JAMA-J. Am. Med. Assoc. 281(6), 552–557 (1999)CrossRefGoogle Scholar
  35. 35.
    Ranck, J. (ed.): Disruptive Cooperation in Digital Health. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40980-1. https://books.google.it/books?id=mGfVjwEACAAJCrossRefGoogle Scholar
  36. 36.
    Rastier, F.: Sémantique interprétative. Formes sémiotiques, Presses universitaires de France (1987). https://books.google.it/books?id=BnuyAAAAIAAJ
  37. 37.
    Sinclair, J.: Reading Concordances: An Introduction. Pearson Longman, New York (2003)Google Scholar
  38. 38.
    Street Jr., R.L.: Information-giving in medical consultations: the influence of patients’ communicative styles and personal characteristics. Soc. Sci. Med. 32(5), 541–548 (1991)CrossRefGoogle Scholar
  39. 39.
    Tu-Keefner, F.: The value of public libraries during a major flooding: how digital resources can enhance health and disaster preparedness in local communities. In: Morishima, A., Rauber, A., Liew, C.L. (eds.) ICADL 2016. LNCS, vol. 10075, pp. 10–15. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49304-6_2CrossRefGoogle Scholar
  40. 40.
    Vezzani, F., Di Nunzio, G.M., Henrot, G.: (not so) elementary, my dear Watson! In: Coronato, R., Gesuato, S. (eds.) Filling Gaps, Building Bridges: Qualitative and Quantitative Approaches to the Study of Literature, Padova, June 2018Google Scholar
  41. 41.
    Vezzani, F., Di Nunzio, G.M., Henrot, G.: TriMED: a multilingual terminological database. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation LREC 2018, Miyazaky, Japan, 7–12 May 2018 (2018, in press)Google Scholar
  42. 42.
    Wandji Tchami, O., Grabar, N.: Towards automatic distinction between specialized and non-specialized occurrences of verbs in medical corpora. In: Proceedings of the 4th International Workshop on Computational Terminology (Computerm), pp. 114–124. Association for Computational Linguistics and Dublin City University, Dublin, Ireland, August 2014. http://www.aclweb.org/anthology/W14-4814
  43. 43.
    Wickham, H.: Tidy data. J. Stat. Softw. 59 (2014). http://www.jstatsoft.org/v59/i10/
  44. 44.
    You, S., DesArmo, J., Mu, X., Lee, S., Neal, J.C.: Visualized related topics (VRT) system for health information retrieval. In: IEEE/ACM Joint Conference on Digital Libraries, JCDL 2014, London, United Kingdom, 8–12 September 2014, pp. 429–430. IEEE Computer Society (2014).  https://doi.org/10.1109/JCDL.2014.6970209
  45. 45.
    Zhu, B., Leroy, G., Chen, H., Chen, Y.: MedTextus: an intelligent web-based medical meta-search system. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, JCDL 2002, Portland, Oregon, USA, June 14–18 2002, p. 386. ACM (2002). http://doi.acm.org/10.1145/544220.544333

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Linguistic and Literary StudiesUniversity of PaduaPaduaItaly
  2. 2.Department of Information EngineeringUniversity of PaduaPaduaItaly

Personalised recommendations