Advertisement

The OpenUP Pilot on Research Data Sharing, Validation and Dissemination in Social Sciences

  • Daniela LuziEmail author
  • Roberta Ruggieri
  • Lucio Pisacane
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 988)

Abstract

The paper presents the results of a pilot carried out within the European project OpenUp (Opening up new methods, indicators and tools for peer review, dissemination of research results and impact measurement). Aim of the pilot is to investigate the applicability of peer review and/or Open Peer Review (OPR) to datasets in disciplines related to Social sciences. Main emphasis is given to the characteristic and features of data sharing and validation in this heterogeneous scientific field, thus providing the basis for the selection of the community chosen for the pilot. Indications emerging from the analysis of the interviews carried out in the pilot can drive the adoption of data quality assessment, and hence peer review, as well as provide some principles that can incentivize other scientific communities to share their research data.

Keywords

Data quality Open data Open dataset review and validation Open Peer Review (OPR) Social sciences 

Notes

Acknowledgments

This study is part of the Horizon 2020 OpenUP project. Grant agreement no. 710722. The authors acknowledge the support and the collaborative efforts of the Human Mortality Database management team, namely Magali Barbieri (University of California, Berkeley and INED, Paris), Vladimir Shkolnikov (Max Planck Institute for Demographic Research (MPIDR) and Dmitri A. Jdanov, Head of the Laboratory of Demographic Data at MPIDR. A great thanks goes to our CNR colleague Cristiana Crescimbene for the valuable technical support during the OpenUP Pilot.

References

  1. 1.
    OpenUP. http://openup-h2020.eu/. Accessed 31 July 2018
  2. 2.
    Vignoli, M.: Project OpenUP-Deliverable D6.2 – Interim Use Case Evaluation Report, 30 November 2017. http://openup-h2020.eu/wp-content/uploads/2017/01/OpenUP_D6.2_Interim-Use-Case-Evaluation-Report.pdf
  3. 3.
    Blümel, C., et al.: Project OpenUP-Deliverable D6.3 – Final Use Case Evaluation Report, 14 September 2018. http://openup-h2020.eu/wp-content/uploads/2018/09/OpenUP_D6.3_Final-Use-Case-Evaluation-Report.pdf
  4. 4.
    Lawrence, B., Jones, C., Matthews, B., Pepler, S., Callaghan, S.: Citation and peer review of data: moving towards formal data publication. Int. J. Digital Curation 6(2), 4–37 (2011).  https://doi.org/10.2218/ijdc.v6i2.205CrossRefGoogle Scholar
  5. 5.
    Mayernik, M.S., Callaghan, S., Leigh, R., Tedds, J., Worley, S.: Peer review of datasets: when, why, and how. Bull. Am. Meteorol. Soc. 96(2), 191–201 (2015).  https://doi.org/10.1175/BAMS-D-13-00083.1CrossRefGoogle Scholar
  6. 6.
    Candela, L., Castelli, D., Manghi, P., Tani, A.: Data journals: a survey. J. Assoc. Inf. Sci. Technol. 66(9), 1747–1762 (2015).  https://doi.org/10.1002/asi.23358CrossRefGoogle Scholar
  7. 7.
    Carpenter, T.A.: What Constitutes Peer Review of Data: A Survey of Published Peer Review Guidelines, April 2017. http://arxiv.org/abs/1704.02236
  8. 8.
    Assante, M., Candela, L., Castelli, D., Tani, A.: Are scientific data repositories coping with research data publishing? Data Sci. J. 15, 1–24 (2016).  https://doi.org/10.5334/dsj-2016-006CrossRefGoogle Scholar
  9. 9.
    Callaghan, S., et al.: Guidelines on recommending data repositories as partners in publishing research data. Int. J. Digital Curation 9(1), 152–163 (2014).  https://doi.org/10.2218/ijdc.v9i1.309CrossRefGoogle Scholar
  10. 10.
    Tenopir, C., et al.: Data sharing by scientists: practices and perceptions. PLoS One 6(6), e21101 (2011).  https://doi.org/10.1371/journal.pone.0021101CrossRefGoogle Scholar
  11. 11.
    Kim, Y., Adler, M.: Social scientists’ data sharing behaviours: investigating the roles of individual motivations, institutional pressures, and data repositories. Int. J. Inf. Manage. 35, 408–418 (2015).  https://doi.org/10.1016/j.ijinfomgt.2015.04.007CrossRefGoogle Scholar
  12. 12.
    Faniel, I.M., Kriesberg, A., Yakel, E.: Social scientists’ satisfaction with data reuse. J. Assoc. Inf. Sci. Technol. 67(6), 1404–1416 (2015).  https://doi.org/10.1002/asi.23480CrossRefGoogle Scholar
  13. 13.
    Kratz, J.E., Strasser, C.: Researcher perspectives on publication and peer review of data. PLoS ONE 10(2), e0117619 (2015).  https://doi.org/10.1371/journal.pone.0117619CrossRefGoogle Scholar
  14. 14.
    Stančiauskas, V., Banelytė, V.: OpenUP survey on researchers’ current perceptions and practices in peer review, impact measurement and dissemination of research results survey, 19 April 2017.  https://doi.org/10.5281/zenodo.556157
  15. 15.
    Borgman, C.L.: Scholarship in the Digital Age: Information, Infrastructure, and the Internet. MIT Press, Cambridge (2007)CrossRefGoogle Scholar
  16. 16.
    Research Data Journal. https://brill.com/view/journals/rdj/rdj-overview.xml. Accessed 19 Sept 2018
  17. 17.
    DANS - Data Archiving and Network Services. https://dans.knaw.nl/en. Accessed 19 Sept 2018
  18. 18.
    UK Data Archive. http://www.data-archive.ac.uk/. Accessed 19 Sept 2018
  19. 19.
    GESIS - Gesellschaft Sozialwissenschaftlicher Infrastruktureinrichtungen. https://www.gesis.org/en/home/. Accessed 19 Sept 2018
  20. 20.
    CESSDA - Consortium of European Social Science Data Archives. https://www.cessda.eu/. Accessed 19 Sept 2018
  21. 21.
    ICPSR - Interuniversity Consortium for Political and Social Research. https://www.icpsr.umich.edu/icpsrweb/. Accessed 19 Sept 2018
  22. 22.
    Data Seal of Approval. https://www.datasealofapproval.org/en/. Accessed 19 Sept 2018
  23. 23.
    DDI - Data Documentation Initiative. http://www.dcc.ac.uk/resources/metadata-standards/ddi-data-documentation-initiative. Accessed 19 Sept 2018
  24. 24.
    Callaghan, S.: Data without peer: examples of data peer review in the earth sciences. D-Lib Mag. 21(1/2), 9 (2015).  https://doi.org/10.1045/january2015-callaghan
  25. 25.
    Data review in Easy. http://datareviews.dans.knaw.nl/. Accessed 19 Sept 2018
  26. 26.
    Barbieri, M., Wilmoth, J.R., Shkolnikov, V.M., et al.: Data resource profile: the human mortality database (HMD). Int. J. Epidemiol. 44(5), 1549–1556 (2015).  https://doi.org/10.1093/ije/dyv105CrossRefGoogle Scholar
  27. 27.
    Special methods used for selected population. https://www.mortality.org/Public/Docs/SpecialMethods.pdf. Accessed 19 Sept 2018
  28. 28.
    Max Planck Institute for Demographic Research Technical reports. https://www.demogr.mpg.de/en/projects_publications/publications_1904/mpidr_technical_reports/all.htm. Accessed 19 Sept 2018
  29. 29.
    User Agreement. https://www.mortality.org/Public/UserAgreement.php. Accessed 19 Sept 2018
  30. 30.
    Citation guidelines. https://www.mortality.org/Public/CitationGuidelines.php. Accessed 19 Sept 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Research on Population and Social Policies, National Research CouncilRomeItaly

Personalised recommendations