Advertisement

A Practical Workflow for an Open Scientific Lifecycle Project: EcoNAOS

  • Annalisa MinelliEmail author
  • Alessandro Sarretta
  • Alessandro Oggioni
  • Caterina Bergami
  • Alessandra Pugnetti
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 988)

Abstract

This paper represents a review of the practical application, work done and near-future perspectives of an open scientific lifecycle model. The EcoNAOS (Ecological North Adriatic Open Science Observatory System) project is an example of the application of Open Science principles to long term marine research. For long term marine research we intend here all the marine research projects based on Long Term Ecological Data. In the paper, the structure of the lifecycle, modeled over Open Science principles, will be presented. The project develops through some fundamental steps: database correction and harmonization, metadata collection, data exploitation by publication on a web infrastructure and planning of dissemination moments. The project also foresees the setting up of a data citation and versioning model (adapted to dynamic databases) and a final guidelines production, illustrating the whole process in detail. The advancement state of these steps will be reviewed. Results achieved and expected outcomes will be explained with a particular focus on the upcoming work.

Keywords

Open science Open data Data citation and versioning 

References

  1. 1.
    Stevan, H., Brody, T.: Comparing the impact of open access (OA) vs. non-OA articles in the same journals. D-lib Mag. 10(6) (2004).  https://doi.org/10.1045/june2004-harnad
  2. 2.
    Hajjem, C., Harnad, S., Gingras, Y.: Ten-year cross-disciplinary comparison of the growth of open access and how it increases research citation impact. arXiv preprint cs/0606079 (2006)Google Scholar
  3. 3.
    Gargouri, Y., et al.: Self-selected or mandated, open access increases citation impact for higher quality research. PloS one 5(10), 13636 (2010).  https://doi.org/10.1371/journal.pone.0013636CrossRefGoogle Scholar
  4. 4.
    McKiernan, E.C., et al.: How open science helps researchers succeed. eLife 5 (2016).  https://doi.org/10.7554/elife.16800
  5. 5.
    Minelli, A., et al.: The project EcoNAOS: vision and practice towards an open approach in the Northern Adriatic Sea ecological observatory. Res. Ideas Outcomes 4 (2018).  https://doi.org/10.3897/rio.4.e24224CrossRefGoogle Scholar
  6. 6.
    European Commission: Open innovation, open science, open to the world - a vision for Europe. (2016) RTD-PUBLICATIONS@ec.europa.eu [ISBN 978-92-79-57346-0] 10.2777/061652Google Scholar
  7. 7.
    David, P.A.: The economic logic of “open science” and the balance between private property rights and the public domain in scientific data and information: a primer. The Role of the Public Domain in Scientific and Technical Data and Information 19–34 (2003)Google Scholar
  8. 8.
    Peters, M.A.: Open education and the open science economy. Yearb. Nat. Soc. Study Educ. 108(2), 203–225 (2009)CrossRefGoogle Scholar
  9. 9.
    European Commission: H2020 Programme - Guidelines on FAIR Data Management in Horizon 2020 (2016). http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf
  10. 10.
    Pennock, M.: Digital curation: a life-cycle approach to managing and preserving usable digital information. Libr. Arch. 1, 34–45 (2007)Google Scholar
  11. 11.
    Ingram, C.: How and why you should manage your research data: a guide for researchers. An introduction to engaging with research data management processes, JISC (2016)Google Scholar
  12. 12.
    Tennant, J.P., et al.: A multi-disciplinary perspective on emergent and future innovations in peer review. F1000Research 6, 1151 (2017).  https://doi.org/10.12688/f1000research.12037.3CrossRefGoogle Scholar
  13. 13.
    GRASS Development Team: Geographic Resources Analysis Support System (GRASS) Software, Version 7.2. Open Source Geospatial Foundation (2017). http://grass.osgeo.org
  14. 14.
    Scovacricchi, T.: Technical recovery of material and methods applied in the cruises of 1965, 1966, 1978/79 as described by P. Franco (1970, 1972, 1982). Internal Report, CNR-ISMAR Venezia (Italy), (2017)Google Scholar
  15. 15.
    Borer, E.T., Seabloom, E.W., Jones, M.B., Schildhauer, M.: Some simple guidelines for effective data management. Bull. Ecol. Soc. Am. 90(2), 205–214 (2009).  https://doi.org/10.1890/0012-9623-90.2.205CrossRefGoogle Scholar
  16. 16.
    Hart, E.M., et al.: Ten simple rules for digital data storage. PLoS Comput. Biol. 12(10), e1005097 (2016).  https://doi.org/10.1371/journal.pcbi.1005097CrossRefGoogle Scholar
  17. 17.
    Oggioni, A., et al.: Interoperability in marine sensor networks through SWE services: the RITMARE experience, pp. 200–223 (2017)  https://doi.org/10.4018/978-1-5225-0700-0.ch009
  18. 18.
    Marchesini, I.: Review of: the project EcoNAOS: vision and practice towards an open approach in the Northern Adriatic Sea ecological observatory. Res. Ideas Outcomes 4, e24224 (2018).  https://doi.org/10.3897/rio.4.e24224.r72863CrossRefGoogle Scholar
  19. 19.
    Peterseil, J.: Review of: the project EcoNAOS: vision and practice towards an open approach in the Northern Adriatic Sea ecological observatory. Res. Ideas Outcomes 4, e24224 (2018).  https://doi.org/10.3897/rio.4.e24224.r72862CrossRefGoogle Scholar
  20. 20.
    Minelli A: Data Harmonisation for EcoNAOS project (Version 0).  https://doi.org/10.5281/zenodo.1416102
  21. 21.
    Pavesi, F., et al.: EDI - a template-driven metadata editor for research data. J. Open Res. Software 4(1) (2016).  https://doi.org/10.5334/jors.106
  22. 22.
    Tagliolato, P., Oggioni, A., Fugazza, C., Pepe, M., Carrara, P.: Sensor metadata blueprints and computer-aided editing for disciplined SensorML. IOP Conf. Ser. Earth Environ. Sci. 34(1), 012036–012036 (2016).  https://doi.org/10.1088/1755-1315/34/1/012036CrossRefGoogle Scholar
  23. 23.
    Vollenweider, R.A., Giovanardi, F., Montanari, G., Rinaldi, A.: Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environ. Official J. Int. Environ. Soc. 9(3), 329–357 (1998)Google Scholar
  24. 24.
    Minelli, A., et al.: Handling Long Term Ecological marine data: an Open Science approach. La ricerca ecologica in un mondo che cambia. Libro degli Abstract, XXVII Congresso Nazionale della Società Italiana di Ecologia (2017)Google Scholar
  25. 25.
    L’Astorina A., Di Fiore M.: Scienziati in affanno? Ricerca e Innovazione Responsabili (RRI) in teoria e nelle pratiche. 180 p. Cnr Edizioni. ISBN 978 88 8080 250 1, (2018).  https://doi.org/10.26324/2018RRICNRBOOK
  26. 26.
    Wood, J., et al.: Riding the wave: How Europe can gain from the rising tide of scientific data. European Union (2010)Google Scholar
  27. 27.
    Ball, A., Duke, M.: How to Cite Datasets and Link to Publications. DCC How-to Guides, Edinburgh: Digital Curation Centre (2015). http://www.dcc.ac.uk/resources/how-guides
  28. 28.
    Altman, M., Crosas, M.: The evolution of data citation: from principles to implementation. IAssist Quarterly 37, 62–70 (2013)Google Scholar
  29. 29.
    Silvello, G.: Theory and practice of data citation. J. Assoc. Inf. Sci. Technol. 69(1), 6–20 (2018)CrossRefGoogle Scholar
  30. 30.
    Rauber, A., et al.: Data citation of evolving data: recommendations of the working group on data citation (WGDC). Result of the RDA Data Citation WG 20 (2015)Google Scholar
  31. 31.
    Proll, S., Rauber, A.: Scalable data citation in dynamic, large databases: model and reference implementation. In: 2013 IEEE International Conference on Big Data. IEEE (2013)Google Scholar
  32. 32.
    Proell, S., Rauber, A.: A scalable framework for dynamic data citation of arbitrary structured data. In: 3rd International Conference on Data Management Technologies and Applications (DATA2014) (2014).  https://doi.org/10.5220/0004991802230230
  33. 33.
    Rauber, A., Amsi, A.: Uytvanck, Dv., Pröll, S.: Identification of Reproducible Subsets for Data Citation. Sharing and Re-Use. Bulletin of IEEE Technical Committee on Digital Libraries, Special Issue on Data Citation, 6–15 (2016)Google Scholar
  34. 34.
    Urban, E., et al.: Pilot projects for publishing and citing ocean data. Eos, Trans. Am. Geophys. Union 93(43), 425–426 (2012)CrossRefGoogle Scholar
  35. 35.
    Narock, T., et al.: The oceanlink project. In: 2014 IEEE International Conference on Big Data (Big Data). IEEE (2014)Google Scholar
  36. 36.
    Baker, K.S., Chandler, C.L.: Enabling long-term oceanographic research: changing data practices, information management strategies and informatics. Deep Sea Res. Part II: Topical Stud. Oceanograp. 55(18–19), 2132–2142 (2008)CrossRefGoogle Scholar
  37. 37.
    Angelini, M., Fazzini, V., Ferro, N., Santucci, G., Silvello, G.: CLAIRE: a combinatorial visual analytics system for information retrieval evaluation. Inf. Process. Manage. 54(6), 1077–1100 (2018)CrossRefGoogle Scholar
  38. 38.
    Alawini, A., Davidson, S.B., Silvello, G., Tannen, V., Wu, Y.: Data citation: a new provenance challenge. IEEE Data Eng. Bull. 41(1), 27–38 (2018)Google Scholar
  39. 39.
    Agosti, M., Ferro, N., Silvello, G.: Digital libraries: from digital resources to challenges in scientific data sharing and re-use. In: Flesca, S., Greco, S., Masciari, E., Saccà, D. (eds.) A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years. SBD, vol. 31, pp. 27–41. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-61893-7_2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CNR-ISMAR Venezia, Arsenale - Tesa 104VeneziaItaly
  2. 2.CNR-IREAMilanoItaly
  3. 3.CNR-ISMAR BolognaBolognaItaly

Personalised recommendations