Advertisement

Long Term Temperature Data Analysis for Damage Detection in Electric Motor Bearings with Density Modeling and Bhattacharyya Distance

  • Wiesław Migdał
  • Jacek WodeckiEmail author
  • Maciej Wuczyński
  • Paweł Stefaniak
  • Agnieszka Wyłomańska
  • Radosław Zimroz
Conference paper
Part of the Applied Condition Monitoring book series (ACM, volume 15)

Abstract

In the paper we will show specific case study related to long-term temperature data from electric motor bearings (with progressing fault) used in belt conveyor operating in open-cast mine. Existing SCADA system for data acquisition has built-in simple decision making rules based on static thresholds. Due to time-varying environmental and operational conditions, i.e. machine is heavily influenced by ambient temperature (−20 up to +30 \(^\circ \)C) and external load (no operation, idle mode, startup with heavily overloaded belt). Hence, basic analytical methods based on simple statistics are sometimes not sufficient to determine the change of technical condition of the bearing. In order to address this issue authors propose an analytical method based on multidimensional distribution analysis. Finally, a clustering method can be applied to multidimensional representation of the initial data. This approach allows to differentiate the technical condition across the investigated time period.

Keywords

Condition monitoring Bhattacharyya distance Temperature data Statistical analysis 

References

  1. 1.
    Wodecki J, Stefaniak P, Śliwiński P, Andrzejewski M (2016) Condition monitoring of loading-haulage-dumping machines based on long-term analysis of temperature data. In: SGEM 2016 conference proceedings, vol 2, pp 157–164Google Scholar
  2. 2.
    Kruczek P, Sokołowski J, Obuchowski J, Sawicki M, Wyłomańska A, Zimroz R (2017) Fault detection in belt conveyor drive unit via multiple source data. In: Cyclostationarity: theory and methods III. Springer, pp 173–186Google Scholar
  3. 3.
    Wodecki J, Stefaniak P, Michalak A, Wyłomańska A, Zimroz R (2017) Technical condition change detection using Anderson–Darling statistic approach for LHD machines engine overheating problem. Int J Min Reclam Environ 1–9Google Scholar
  4. 4.
    Sawicki M, Zimroz R, Wyłomańska A, Obuchowski J, Stefaniak P, Żak G (2015) An automatic procedure for multidimensional temperature signal analysis of a SCADA system with application to belt conveyor components. Proc Earth Planet Sci 15:781–790CrossRefGoogle Scholar
  5. 5.
    Yang W, Little C, Tavner PJ et al (2013) Data-driven technique for interpreting wind turbine condition monitoring signals. IET Renew Power Gener 8(2):151–159CrossRefGoogle Scholar
  6. 6.
    Guo P, Infield D, Yang X (2012) Wind turbine generator condition-monitoring using temperature trend analysis. IEEE Trans Sustain Energy 3(1):124–133CrossRefGoogle Scholar
  7. 7.
    Astolfi D, Castellani F, Terzi L (2014) Fault prevention and diagnosis through SCADA temperature data analysis of an onshore wind farm. Diagnostyka 15(2):71–78Google Scholar
  8. 8.
    Yang W, Court R, Jiang J (2013) Wind turbine condition monitoring by the approach of SCADA data analysis. Renew Energy 53(C):365–376CrossRefGoogle Scholar
  9. 9.
    Nembhard A, Sinha J, Pinkerton A, Elbhbah K (2013) Fault diagnosis of rotating machines using vibration and bearing temperature measurements. Diagnostyka 14(3):45–51Google Scholar
  10. 10.
    Crossman JA, Guo H, Murphey YL, Cardillo J (2003) Automotive signal fault diagnostics-part I: signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature selection. IEEE Trans Veh Technol 52(4):1063–1075CrossRefGoogle Scholar
  11. 11.
    Mana M, Piccioni E, Terzi L (2017) Wind turbine fault diagnosis through temperature analysis: an artificial neural network approach. Diagnostyka 18Google Scholar
  12. 12.
    Wyłomańska A, Zimroz R (2015) The analysis of stochastic signal from LHD mining machine. In: Stochastic models. Statistics and their applications. Springer, Cham, pp 469–478Google Scholar
  13. 13.
    Peter DH (1985) Kernel estimation of a distribution function. Commun Stat-Theory Methods 14(3):605–620MathSciNetCrossRefGoogle Scholar
  14. 14.
    Silverman BW (1986) Density estimation for statistics and data analysis, vol 26. CRC Press, Boca RatonCrossRefGoogle Scholar
  15. 15.
    Choi E, Lee C (2003) Feature extraction based on the Bhattacharyya distance. Pattern Recogn 36(8):1703–1709CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wiesław Migdał
    • 1
  • Jacek Wodecki
    • 2
    Email author
  • Maciej Wuczyński
    • 2
  • Paweł Stefaniak
    • 2
  • Agnieszka Wyłomańska
    • 2
  • Radosław Zimroz
    • 3
  1. 1.UNICO Ltd. Industrial Informatics SystemsKatowicePoland
  2. 2.Research and Development CentreKGHM Cuprum Ltd.WroclawPoland
  3. 3.Faculty of Geoengineering, Mining and Geology, Diagnostics and Vibro-Acoustic Science LaboratoryWroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations