Dye-Sensitized Cu-Doped TiO2 Solar Cells with a Double Flat Band

  • Sara ChahidEmail author
  • Desireé M. de los Santos
  • Rodrigo Alcántara
Conference paper
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)


This study reported the successful synthesis of TiO2 nanoparticles doped with Cu as photoanaodes in dye-sensitized solar cells (DSSCs). The nanoparticles were synthetized by low temperature hydrolysis and annealed at 500 °C. The obtained samples were characterized using, X-ray diffraction XRD, Raman spectroscopy. UV-Vis spectroscopy was used to determine the band gap energy values of the as-prepared samples, which Cu-doped TiO2 nanoparticles showed dramatically decrease in band gap energy from 2.9 eV for undoped TiO2 to 1.35 eV in Cu-doped TiO2 nanoparticles. Significant improvement in photovoltaic devices leads to an increase in short circuit current density (Jsc) and in the efficiency of the cell made with Cu-TiO2 increased. This improvement can be explained by the flat band values; which the sample with Cu presented two flat band voltage values, that indicated the creation of the new sublevels in the valance band maximum with a narrowing in the band gap of TiO2 nanoparticles.


Cu-doped TiO2 DSSCs Flat band voltage 


  1. 1.
    Andrade, L., Ribeiro, H.A., Mendes, A.: Dye-sensitized solar cells: an overview. Encycl. Inorg. Bioinorg. Chem. 1–20 (2011)Google Scholar
  2. 2.
    EPA, Inventory of U.S. greenhouse gas emissions and sinks: 1990–1998,’ EPA 236-R-00-001, U.S. Environmental Protection Agency (2000)Google Scholar
  3. 3.
    Gong, J., Liang, J., Sumathy, K.: Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew. Sustain. Energ. Rev. 16(8), 5848–5860 (2012)CrossRefGoogle Scholar
  4. 4.
    O’Regan, B., Graẗzel, M.: Nature. 353, 737 (1991)CrossRefGoogle Scholar
  5. 5.
    Hagfeldt, A., Gratzel, M.: Chem. Rev. 95, 49 (1995)CrossRefGoogle Scholar
  6. 6.
    Yu, H., Zhang, S.Q., Zhao, H.J., Xue, B., Liu, P., Will, G.: High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells. J. Phys. Chem. C. 113(36), 16277–16282 (2009)CrossRefGoogle Scholar
  7. 7.
    Li, F.R., Wang, G.C., Jiao, Y.: Efficiency enhancement of ZnO-based dye-sensitized solar cell by hollowTiO2 nanofibers. J. Alloy. Compd. 611(5), 19–23 (2014)CrossRefGoogle Scholar
  8. 8.
    Wang, H.K., Rogach, A.L.: Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem. Mater. 26(1), 123–133 (2014)CrossRefGoogle Scholar
  9. 9.
    Quintana, M., Edvinsson, T., Hagfeldt, A., Boschloo, G.: Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J. Phys. Chem. C. 111(2), 1035–1041 (2007)CrossRefGoogle Scholar
  10. 10.
    Ko, K.H., Lee, Y.C., Jung, Y.J.: J. Colloid. Interf. Sci. 283, 482–487 (2005)Google Scholar
  11. 11.
    Wang, S., Bai, L.N., Sun, H.M., Jiang, Q., Lian, J.S.: Powder Technol. 244, 9–15 (2013)Google Scholar
  12. 12.
    Cheng, P., Deng, C., Dai, X., Li, B., Liu, D., Xu, J.: Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells. Photochem. Photobiol. A Chem. 195(1), 144–150 (2008)CrossRefGoogle Scholar
  13. 13.
    Cheng, G., Akhtar, M.S., Yang, O.B., Stadler, F.J.: Novel preparation of anatase TiO2@Reduced graphene oxide hybrids for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5(14), 6635–6642 (2013)CrossRefGoogle Scholar
  14. 14.
    Chae, J., Kim, D.Y., Kim, S., Kang, M.: Photovoltaic efficiency on dye-sensitized solar cells (DSSC) assembled using Ga-incorporated TiO2 materials. J. Ind. Eng. Chem. 16(6), 906 (2010)CrossRefGoogle Scholar
  15. 15.
    Navas, J., Fernandez-Lorenzo, C., Aguilar, T., Alcantara, R., Martın-Calleja, J.: Improving open- circuit voltage in DSSCs using Cu-doped TiO2 as a semiconductor. Phys. Status Solidi. 2, 378–385 (2012). Scholar
  16. 16.
    Lü, X., Mou, X., Wu, J., Zhang, D., Zhang, L., Huang, F., Xu, F., Huang, S.: Adv. Funct. Mater. 20, 509 (2010)CrossRefGoogle Scholar
  17. 17.
    Navas, J., Fernández-Lorenzo, C., Aguilar, T., Alcántara, R., Martín-Calleja, J.: Phys. Status Solidi. A. 209, 378 (2012)Google Scholar
  18. 18.
    Navas, J., Aguilar, T., Fernández-Lorenzo, C., Alcántara, R., De los Santos D.M., Sánchez-Coronilla, A., Zorrilla, D., Sánchez-Márquez, J.,Martín-Calleja, J.: Cu(II)-doped TiO2 nanoparticles as photoelectrode in dye-sensitized solar cells: improvement of open-circuit voltage and a light scattering effect. Sci. Adv. Mater. 6, 473–82 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sara Chahid
    • 1
    Email author
  • Desireé M. de los Santos
    • 1
  • Rodrigo Alcántara
    • 1
  1. 1.Departamento de Química Física, Facultad de CienciasUniversidad de CádizPuerto Real (Cádiz)Spain

Personalised recommendations