Advertisement

Individualized Follow-up of the Learner Based on the K-Nearest Neighbors (K-NN) Method Embedded in the Retrieval Step of Case Based Reasoning Approach (CBR)

  • Nihad El GhouchEmail author
  • El Mokhtar En-Naimi
  • Abdelhamid Zouhair
  • Mohammed Al Achhab
Conference paper
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)

Abstract

Learner follow-up in adaptive learning systems requires real-time decision support approaches, using algorithms to predict learner behavior based on the experiences of other learners (learners already classified in groups). We propose an adaptive learning system architecture using the Felder-Silverman learning style model to detect the initial learning profile for each learner in order to provide a learning path based on his profile and the Incremental Dynamic Case Based Reasoning approach based on the exploitation of learning traces in order to follow and to control the behavior of the learner in an automatic and real-time way through the search for similar past experiences using the K-Nearest Neighbors algorithm.

Keywords

Adaptive learning system Learning style Learning path Felder and silverman learning style model (FSLSM) Incremental dynamic case based reasoning (IDCBR) Supervised learning machine K-Nearest neighbors method (K-NN) 

References

  1. 1.
    Curry, L.: An organization of learning style theory and constructs. In: Curry, D.L. (dir.) Learning Style in Continuing Medical Education (pp. 115–123). Council on Medical Education, Canadian Medical Association, Ottawa, Canada (1983)Google Scholar
  2. 2.
    Carver, C.A., Howard, R.A., Lane, W.D.: Enhancing student learning through hypermedia courseware and incorporation of student learning styles. IEEE Trans. Educ. 42, 33–38 (1999)CrossRefGoogle Scholar
  3. 3.
    Paredes, P., Rodriguez, P.: A mixed approach to modelling learning styles in adaptive educational hypermedia. Adv. Technol. Learn. 1(4), 210–215 (2004)CrossRefGoogle Scholar
  4. 4.
    Cha, H.J., Kim, Y.S., Park, S.H., Yoon, T.B., Jung, Y.M. et Lee, J.H.: Learning styles diagnosis based on user interface behaviors for the customization of learning interfaces in an intelligent tutoring system. In: Communication presented at the 8th International Conference on Intelligent Tutoring Systems (ITS 2006). Jhongli, Taiwan (2006)CrossRefGoogle Scholar
  5. 5.
    Wolf, C.: iWeaver: Towards an interactive Web-based adaptive learning environment to address individual learning styles. In: Auer, D.M. (dir.) Blended learning: International workshop – Interactive Computer Aided Learning (ICL) 2002. Kassel University Press, Kassel, Germany (2002)Google Scholar
  6. 6.
    Papanikolaou, K.A., Grigoriadou, M., Kornilakis, H., Magoulas, G.D.: Personalizing the interaction in a Web-based educational hypermedia system: the case of INSPIRE. User Model. User-Adap. Inter. 13(3), 213–267 (2003)CrossRefGoogle Scholar
  7. 7.
    Chikh, A.: Une méthodologie de réutilisation en ingénierie du document : Le système SABRA . Thèse de Doctorat d’état en Informatique, INI (2004)Google Scholar
  8. 8.
    Brusilovsky, P.: Methods and techniques of adaptive hypermedia. Adapt. Hypertext User Model. User Adap. Interact. 6(2–3), 87–129 (1996)CrossRefGoogle Scholar
  9. 9.
    Brusilovsky, P.: Adaptive hypermedia. Adapt. Hypertext User Model. User Adap. Interact. 11, 87–110 (2001). Site http://www.sis.pitt.edu/~peterb/papers.html
  10. 10.
    Amélie cordier.: Gestion des Connaissances pour des Systèmes à Base de Connaissances Hybrides . Mémoire de DEA DISIC, Université de Claude Bernard Lyon I, Laboratoire LIRIS, Juin (2004)Google Scholar
  11. 11.
    Mille A.: Traces bases reasoning (TBR) definition, illustration and echoes with storytelling. Rapport Technique RR-LIRIS-2006-002, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon1/Université Lumière Lyon 2/Ecole Centrale de Lyon, Jan (2006)Google Scholar
  12. 12.
    Zouhair, A.: Raisonnement à Partir de CasDynamique Multi-Agents: application à un système de tuteur intelligent. Ph.D in computer science, in Cotutelle between the Faculty of Sciences and Technologies of Tangier (Morocco) and the University of Le Havre (France), Oct (2014)Google Scholar
  13. 13.
    El Mokhtar, E.N.-N.A.I.M.I., Zouhair, Abdelhamid: Intelligent dynamic case-based reasoning using multi-agents system in adaptive e-service, e-commerce and e-learning systems. Int. J. Knowl. Learn. (IJKL) 11(1), 42–57 (2016)Google Scholar
  14. 14.
    Mill. A.: Tutorial CBR: Etat de l’art de raisonnement à partir de cas. Plateforme AFIA’99, Palaiseau (1999)Google Scholar
  15. 15.
    https://www.supinfo.com/articles/single/6041-machine-learning-introduction apprentissage - automatique, published by Metomo Joseph Bertrand Raphael en (2017)
  16. 16.
    Silva, C., et Ribeiro, B.: Inductive Inference for Large Scale Text Classification: Kernel Approaches and Techniques, Vol. 255 (2009)Google Scholar
  17. 17.
    Hastie, T., Tibshirani, R., et Friedman, J.: The Elements of Statistical Learn ing : Data Mining, Inference, and Prediction (2001)Google Scholar
  18. 18.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods (2000)Google Scholar
  19. 19.
    Liefooghe, A.: Classification supervisée, pp 30, 3, 2012-2013Google Scholar
  20. 20.
  21. 21.
    Hasan, M., Boris, F.: SVM: Machines a Vecteurs de Support ou Separateurs a Vastes Marges ..BD Web, ISTY3.Versailles St Quentin, France. pp 01, 16 janvier (2006)Google Scholar
  22. 22.
    Mathieu-Dupas, E.: Algorithme des k plus proches voisins pondères et application en diagnostic, pp 02,04. Marseille, France, France. (2010)Google Scholar
  23. 23.
    Felder, R.M., Silverman, L.K.: Learning Styles and Teaching Styles in Engineering Education, Presented at the 1987 Annual Meeting of the American Institute of Chemical Engineers, New York, Nov (1987)Google Scholar
  24. 24.
    Sauvé, L., Nadeau, J.-R. et Leclerc, G.: Le profil d’apprentissage des étudiants inscrits dans un certificat de cycle offert à distance et sur campus: une étude comparative. Revue de l’enseignement à distance 8(2), 19–35 (1993). Récupéré du site de la Revue: http://www.jofde.ca/index.php/jde/article/view/218/627
  25. 25.
    Brown, J.S.: New learning environments for the 21st century : Exploring the edge. Change: Magazine High. Learn. 38(5), 18–24 (2006)CrossRefGoogle Scholar
  26. 26.
    Popescu, E., Badica, C., Trigano, P.: Description and organization of instructional resources in an adaptive educational system focused on learning styles. In: Advances in Intelligent and Distributed Computing, pp. 177–186. Springer. (2008) ISBN: 978-3-540-74929-5CrossRefGoogle Scholar
  27. 27.
    Kuljis, J., Liu, F.: A Comparison of Learning Style Theories on the Suitability for Elearning. In: Hamza, M.H. (ed.) Proceedings of the Iasted Conference on Web Technologies, Applications, and Services, pp. 191–197. ACTA Press (2005)Google Scholar
  28. 28.
    Thirumuruganathan, S.: A Detailed Introduction to K-Nearest Neighbor (KNN) Algorithm (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nihad El Ghouch
    • 1
    Email author
  • El Mokhtar En-Naimi
    • 1
  • Abdelhamid Zouhair
    • 2
  • Mohammed Al Achhab
    • 3
  1. 1.LIST Laboratory, the Faculty of Sciences and Technologies, UAETangierMorocco
  2. 2.The National School of Applied Sciences, UAEAl-HoceimaMorocco
  3. 3.The National School of Applied Sciences, UAETetouanMorocco

Personalised recommendations