Using an Input Data Segregation Algorithm to Minimise the Error of the Fuzzy Controller in the Metrological Correction System of Electric Energy Meters

  • Bartosz Dominikowski
  • Krzysztof Pacholski
  • Piotr Woźniak
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 548)


The authors of this paper presented the possibility of using a fuzzy controller in the conversion factor correction system associated with the energy meter’s current channel. The accuracy of non-adaptive fuzzy controllers is significantly affected by the relevant expert knowledge in the form of rules stored in the database. In order to increase fuzzy controller accuracy, the k-means clustering method was used to group the input data of the controller (peak value of the output signal of the energy meter’s current transducer and its derivative). This analysis can be conducted to extract central points that represent particular input data groups. Based on computer testing of fuzzy controller output signals performed by the authors, the assignment of membership functions to the central points of the input data groups should be done by the expert at the beginning while designing the rules. Additionally, this paper presents the possibilities of tuning the fuzzy controller by changing its parameters.


K-means clustering Fuzzy controller Gain corrector 


  1. 1.
    Norma PN-EN 50463-2: Zastosowania kolejowe – Pomiar energii na pokładzie pociągu. Część 2 – Pomiar energii. [In Polish: Railway applications - Energy measurement on the train board. Part 2 - Energy measurement] (2013)Google Scholar
  2. 2.
    Biliński, J., Buta, S., Gmurczyk, E., Kaska, J.: Nowoczesny asynchroniczny napęd z hamowaniem odzyskowym produkcji MEDCOM do zmodernizowanych elektrycznych zespołów trakcyjnych serii EN57AKŁ. Technika Transportu Szynowego 12/2004, pp. 20–25 (2004). [In Polish: Modern asynchronous electric drive with regenerative braking production by MEDCOM to modernized electric multiple units series EN57AKŁ]Google Scholar
  3. 3.
    Bolikowski, J.: Podstawy projektowania inteligentnych przetworników pomiarowych wielkości, Monografie nr 68, Zielona Góra (1993)Google Scholar
  4. 4.
    Piegat, A.: Fuzzy Modeling and Control. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Wu, J.: Advances in K-means Clustering A Data Mining Thinking. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Dominikowski, B., Pacholski, K.: Korekcja właściwości metrologicznych przetworników szybkozmiennych sygnałów elektronicznych. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej 49, 21–24 (2016). [In Polish: Correction of metrological properties for fast changing electronic signal of transducer]Google Scholar
  8. 8.
    Babuška, R.: Fuzzy Modeling for Control. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Peña-Reyes, C.A.: Coevolutionary Fuzzy Modeling. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Zhang, H., Liu, D.: Fuzzy Modeling and Fuzzy Control. Birkhäuser, USA (2006)zbMATHGoogle Scholar
  11. 11.
    Alegre Pérez, J.P., Celma, S., López, B.C.: Automatic Gain Control Techniques and Architectures for RF Receivers. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bartosz Dominikowski
    • 1
  • Krzysztof Pacholski
    • 1
  • Piotr Woźniak
    • 1
  1. 1.Lodz University of TechnologyLodzPoland

Personalised recommendations