Fully Automatic Planning of Total Shoulder Arthroplasty Without Segmentation: A Deep Learning Based Approach

  • Paul Kulyk
  • Lazaros Vlachopoulos
  • Philipp Fürnstahl
  • Guoyan Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11404)


We present a method for automatically determining the position and orientation of the articular marginal plane (AMP) of the proximal humerus in computed tomography (CT) images without segmentation or hand-crafted features. The process is broken down into 3 stages. Stage 1 determines a coarse estimation of the AMP center by sampling patches over the entire image and combining predictions with a novel kernel density estimation method. Stage 2 utilizes the estimate from stage 1 to focus on a smaller sampling region and operates at a higher images resolution to obtain a refined prediction of the AMP center. Stage 3 focuses patch sampling on the region around the center obtained at stage 2 and regresses the tip of a vector normal to the AMP which yields the orientation of the plane. The system was trained and evaluated on 27 upper arm CTs. In a 4-fold cross-validation the mean error in estimating the AMP center was \(1.30\,{\pm }\,0.65\) mm and the angular error for estimating the normal vector was \(4.68\,{\pm }\,2.84^\circ \).


Regression Proximal humerus Articular marginal plane Deep learning Total shoulder arthroplasty 


  1. 1.
    Kim, S., Wise, B., Zhang, Y., Szabo, R.: Increasing incidence of shoulder arthroplasty in the United States. J. Bone Joint Surg. Am. 93(24), 2249–2254 (2011). Scholar
  2. 2.
    Keener, J., Chalmers, P., Yamaguchi, K.: The humeral implant in shoulder arthroplasty. J. Am. Acad. Orthop. Surg. 25(6), 427–438 (2017). Scholar
  3. 3.
    Edwards, T., Morris, B., Gartsman, G.: Shoulder Arthroplasty, 2nd edn. Elsevier, Amsterdam (2019)Google Scholar
  4. 4.
    Dines, D., Laurencin, C., Williams, G. (eds.): Arthritis & Arthroplasty: The Shoulder. Saunders/Elsevier, Philadelphia (2009)Google Scholar
  5. 5.
    Pearl, M.: Proximal humeral anatomy in shoulder arthroplasty: implications for prosthetic design and surgical technique. J. Shoulder Elbow Surg. 14(Suppl 1), S99–S104 (2005). Scholar
  6. 6.
    DeLude, J., et al.: An anthropometric study of the bilateral anatomy of the humerus. J. Shoulder Elbow Surg. 16(4), 477–483 (2007). Scholar
  7. 7.
    Johnson, J., Thostenson, J., Suva, L., Hasan, S.: Relationship of bicipital groove rotation with humeral head retroversion: a three-dimensional computed tomographic analysis. J. Bone Joint Surg. Am. 95(8), 719–724 (2013). Scholar
  8. 8.
    Vlachopoulos, L., et al.: Computer algorithms for three-dimensional measurement of humeral anatomy: analysis of 140 paired humeri. J. Shoulder Elbow Surg. 25(2), e38–e48 (2016). Scholar
  9. 9.
    Tschannen, M., Vlachopoulos, L., Gerber, C., Székely, G., Fürnstahl, P.: Regression forest-based automatic estimation of the articular margin plane for shoulder prosthesis planning. Med. Image Anal. 31, 88–97 (2016). Scholar
  10. 10.
    Janssens, R., Zeng, G., Zheng, G.: Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks. arXiv:1712.01509 (2017).
  11. 11.
    Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). Scholar
  12. 12.
    Zhang, J., et al.: Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 720–728. Springer, Cham (2017). Scholar
  13. 13.
    Boileau, P., Cheval, D., Gauci, M., Holzer, N., Chaoui, J., Walch, G.: Automated three-dimensional measurement of glenoid version and inclination in arthritic shoulders. J. Bone Joint Surg. Am. 100(1), 57–65 (2018). Scholar
  14. 14.
    Nguyen, D., et al.: Improved accuracy of computer assisted glenoid implantation in total shoulder arthroplasty: an in-vitro randomized controlled trial. J. Shoulder Elbow Surg. 18(6), 907–914 (2009). Scholar
  15. 15.
    Werner, B., Hudek, R., Burkhart, K., Gohlke, F.: The influence of three-dimensional planning on decision-making in total shoulder arthroplasty. J. Shoulder Elbow Surg. 26(8), 1477–1483 (2017). Scholar
  16. 16.
    Suzani, A., Seitel, A., Liu, Y., Fels, S., Rohling, R.N., Abolmaesumi, P.: Fast automatic vertebrae detection and localization in pathological CT scans - a deep learning approach. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 678–686. Springer, Cham (2015). Scholar
  17. 17.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014).
  18. 18.
    Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. arXiv:1605.08695 (2016).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paul Kulyk
    • 1
    • 2
  • Lazaros Vlachopoulos
    • 3
  • Philipp Fürnstahl
    • 3
  • Guoyan Zheng
    • 1
  1. 1.Institute for Surgical Technology and BiomechanicsUniversity of BernBernSwitzerland
  2. 2.College of MedicineUniversity of SaskatchewanSaskatoonCanada
  3. 3.Computer Assisted Research and Development GroupUniversity of Zurich, Balgrist University HospitalZurichSwitzerland

Personalised recommendations