Advertisement

Fully Automatic Teeth Segmentation in Adult OPG Images

  • Nicolás Vila BlancoEmail author
  • Timothy F. Cootes
  • Claudia Lindner
  • Inmaculada Tomás Carmona
  • Maria J. Carreira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11404)

Abstract

This work addresses the problem of segmenting teeth in panoramic dental images. Random forest regression voting constrained local models were applied firstly to locate the mandible and the approximate pose of each tooth, and secondly to locate the full outline of each individual tooth. An automatically computed quality-of-fit measure was proposed to identify missing teeth. The system was evaluated using 346 manually annotated images containing adult-stage mandibular teeth. Encouraging results were achieved for detecting missing teeth. The system achieved state-of-the-art performance in locating the outline of present teeth with a median point-to-curve error of 0.2 mm for each of the teeth.

Keywords

Teeth segmentation Panoramic dental images Random forest regression-voting Machine learning 

Notes

Acknowledgements

This work has received financial support from the Consellería de Cultura, Educación e Ordenación Universitaria (accreditation 2016–2019, ED431G/08, growth potential group 2017-2020 ED431B 2017/029, reference competitive group 2017–2020, ED431C 2017/69, and N. Vila Blanco support ED481A-2017) and the European Regional Development Fund (ERDF). C. Lindner is funded by the Medical Research Council, UK (MR/S00405X/1).

References

  1. 1.
    Rondon, R., Pereira, Y., do Nascimento, G.: Common positioning errors in panoramic radiography: a review. Imaging Sci. Dent. 44(1), 1–6 (2014).  https://doi.org/10.5624/isd.2014.44.1.1CrossRefGoogle Scholar
  2. 2.
    Halperin-Sternfeld, M., Machtei, E., Balkow, C., Horwitz, J.: Patient movement during extraoral radiographic scanning. Oral Radiol. 32(1), 40–47 (2016).  https://doi.org/10.1007/s11282-015-0208-6CrossRefGoogle Scholar
  3. 3.
    Chen, H., Jain, A.: Tooth contour extraction for matching dental radiographs. In: Proceedings of the 17th International Conference on Pattern Recognition – ICPR 2004, vol. 3, pp. 522–525. IEEE (2004).  https://doi.org/10.1109/ICPR.2004.1334581
  4. 4.
    Nomir, O., Abdel-Mottaleb, M.: A system for human identification from X-ray dental radiographs. Pattern Recogn. 38(8), 1295–1305 (2005).  https://doi.org/10.1016/j.patcog.2004.12.010CrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, H., Jain, A.: Dental biometrics: alignment and matching of dental radiographs. In: Proceedings of the 7th IEEE Workshops on Application of Computer Vision– WACV/MOTION 2005, vol. 1, pp. 316–321. IEEE (2005).  https://doi.org/10.1109/ACVMOT.2005.41
  6. 6.
    Oliveira, J., Proença, H.: Caries detection in panoramic dental X-ray images. In: Tavares, J., Jorge, R.N. (eds.) Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol. 19, pp. 175–190. Springer, Dordrecht (2011).  https://doi.org/10.1007/978-94-007-0011-6_10CrossRefGoogle Scholar
  7. 7.
    Li, S., Fevens, T., Krzyżak, A., Jin, C., Li, S.: Semi-automatic computer aided lesion detection in dental X-rays using variational level set. Pattern Recogn. 40(10), 2861–2873 (2007).  https://doi.org/10.1016/j.patcog.2007.01.012CrossRefGoogle Scholar
  8. 8.
    Čular, L., Tomaić, M., Subašić, M., Šarić, T., Sajković, V., Vodanović, M.: Dental age estimation from panoramic X-ray images using statistical models. In: Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis – ISPA 2017, pp. 25–30. IEEE (2017).  https://doi.org/10.1109/ISPA.2017.8073563
  9. 9.
    Razali, M., Ahmad, N., Zaki, Z., Ismail, W., et al.: Region of adaptive threshold segmentation between mean, median and Otsu threshold for dental age assessment. In: Proceedings of the International Conference on Computer, Communications, and Control Technology – I4CT 2014, pp. 353–356. IEEE(2014).  https://doi.org/10.1109/I4CT.2014.6914204
  10. 10.
    Lira, P., Giraldi, G., Neves, L.: Panoramic dental X-ray image segmentation and feature extraction. In: Proceedings of the V Workshop of Computing Vision, Sao Paulo, Brazil (2009)Google Scholar
  11. 11.
    Amer, Y., Aqel, M.: An efficient segmentation algorithm for panoramic dental images. Procedia Comput. Sci. 65, 718–725 (2015).  https://doi.org/10.1016/j.procs.2015.09.016CrossRefGoogle Scholar
  12. 12.
    Shah, S., Abaza, A., Ross, A., Ammar, H.: Automatic tooth segmentation using active contour without edges. In: Proceedings of the 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference, pp. 1–6. IEEE(2006).  https://doi.org/10.1109/BCC.2006.4341636
  13. 13.
    Lindner, C., Bromiley, P., Ionita, M., Cootes, T.: Robust and accurate shape model matching using random forest regression-voting. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1862–1874 (2015).  https://doi.org/10.1109/TPAMI.2014.2382106CrossRefGoogle Scholar
  14. 14.
    Cristinacce, D., Cootes, T.: Automatic feature localisation with constrained local models. Pattern Recognit. 41(10), 3054–3067 (2008).  https://doi.org/10.1016/j.patcog.2008.01.024CrossRefzbMATHGoogle Scholar
  15. 15.
    Lindner, C., Thiagarajah, S., Wilkinson, J., Wallis, G., The arcOGEN Consortium: Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE Trans. Med. Imaging 32(8), 1462–1472 (2013).  https://doi.org/10.1109/TMI.2013.2258030CrossRefGoogle Scholar
  16. 16.
    Cootes, T.F., Ionita, M.C., Lindner, C., Sauer, P.: Robust and accurate shape model fitting using random forest regression voting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 278–291. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33786-4_21CrossRefGoogle Scholar
  17. 17.
    Bromiley, P.A., Adams, J.E., Cootes, T.F.: Localisation of vertebrae on DXA images using constrained local models with random forest regression voting. In: Yao, J., Glocker, B., Klinder, T., Li, S. (eds.) Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 20. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14148-0_14CrossRefGoogle Scholar
  18. 18.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition – CVPR 2001. IEEE (2001).  https://doi.org/10.1109/CVPR.2001.990517

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolás Vila Blanco
    • 1
    Email author
  • Timothy F. Cootes
    • 2
  • Claudia Lindner
    • 2
  • Inmaculada Tomás Carmona
    • 3
  • Maria J. Carreira
    • 1
  1. 1.Centro de Investigación en Tecnoloxías da Información (CITIUS)University of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Centre for Imaging SciencesUniversity of ManchesterManchesterUK
  3. 3.Oral Sciences Research Group, Health Research Institute Foundation of Santiago de Compostela, University of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations