Transformation Into Triangular Forms

  • Pauline BernardEmail author
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 479)


This chapter raises the question of transforming a nonlinear system into a triangular form. It is recalled that a differential observability condition enables to transform a system into a phase-variable form (with a nonlinearity on the last line only) but via a map that depends on the derivatives of the input, which may not be desirable. To suppress this dependence, the famous uniform observability (“observability for any input”) is necessary to ensure the triangularity of the target form. However, it is not sufficient to obtain a Lipschitz triangular form, and it may only give a continuous triangular form. The link between this Lipschitzness and the order of differential observability of the drift system is investigated.


  1. 1.
    Bernard, P., Praly, L., Andrieu, V., Hammouri, H.: On the triangular canonical form for uniformly observable controlled systems. Automatica 85, 293–300 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Besançon, G., Ticlea, A.: An immersion-based observer design for rank-observable nonlinear systems. IEEE Trans. Autom. Control 52(1), 83–88 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gauthier, J.P., Bornard, G.: Observability for any u(t) of a class of nonlinear systems. IEEE Trans. Autom. Control 26, 922–926 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems application to bioreactors. IEEE Trans. Autom. Control 37(6), 875–880 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gauthier, J.P., Kupka, I.: Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  6. 6.
    Hermann, R., Krener, A.: Nonlinear controllability and observability. IEEE Trans. Autom. Control 22(5), 728–740 (1977)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jouan, P., Gauthier, J.: Finite singularities of nonlinear systems. Output stabilization, observability, and observers. J. Dyn. Control Syst. 2(2), 255–288 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kirszbraun, M.D.: Über die zusammenziehende und Lipschitzsche transformationen. Fundam. Math. 22, 77–108 (1934)CrossRefGoogle Scholar
  9. 9.
    Leborgne, D.: Calcul Différentiel et Géometrie. Presse Universitaire de France, France (1982)zbMATHGoogle Scholar
  10. 10.
    McShane, E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40(12), 837–842 (1934)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rapaport, A., Maloum, A.: Design of exponential observers for nonlinear systems by embedding. Int. J. Robust Nonlinear Control 14, 273–288 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Valentine, F.A.: A Lipschitz condition preserving extension for a vector function. Am. J. Math. 67(1), 83–93 (1945)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zeitz, M.: Observability canonical (phase-variable) form for nonlinear time-variable systems. Int. J. Syst. Sci. 15(9), 949–958 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”University of BolognaBolognaItaly

Personalised recommendations