Skip to main content

Scaling Spike Detection and Sorting for Next-Generation Electrophysiology

  • Chapter
  • First Online:
In Vitro Neuronal Networks

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 22))

Abstract

Reliable spike detection and sorting, the process of assigning each detected spike to its originating neuron, are essential steps in the analysis of extracellular electrical recordings from neurons. The volume and complexity of the data from recently developed large-scale, high-density microelectrode arrays and probes, which allow recording from thousands of channels simultaneously, substantially complicate this task conceptually and computationally. This chapter provides a summary and discussion of recently developed methods to tackle these challenges and discusses the important aspect of algorithm validation, and assessment of detection and sorting quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamos, D. A., Kosmidis, E. K., & Theophilidis, G. (2008). Performance evaluation of PCA-based spike sorting algorithms. Computer Methods and Programs in Biomedicine, 91(3), 232–244.

    Article  Google Scholar 

  • Ballini, M., Muller, J., Livi, P., Chen, Y., Frey, U., Stettler, A., et al. (2014). A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE Journal of Solid-State Circuits, 49(11), 2705–2719.

    Article  Google Scholar 

  • Berdondini, L., van der Wal, P. D., Guenat, O., de Rooij, N. F., Koudelka-Hep, M., Seitz, P., et al. (2005). High-density electrode array for imaging in vitro electrophysiological activity. Biosensors and Bioelectronics, 21(1), 167–74.

    Article  CAS  Google Scholar 

  • Bestel, R., Daus, A. W., & Thielemann, C. (2012). A novel automated spike sorting algorithm with adaptable feature extraction. Journal of Neuroscience Methods, 211(1), 168–178.

    Article  Google Scholar 

  • Buzsáki, G., & Mizuseki, K. (2014). The log-dynamic brain: How skewed distributions affect network operations. Nature Reviews Neuroscience, 15(4), 264.

    Article  Google Scholar 

  • Chung, J. E., Magland, J. F., Barnett, A. H., Tolosa, V. M., Tooker, A. C., Lee, K. Y., et al. (2017). A fully automated approach to spike sorting. Neuron, 95(6), 1381–1394.

    Article  CAS  Google Scholar 

  • Dimitriadis, G., Neto, J. P., Aarts, A., Alexandru, A., Ballini, M., Battaglia, F., et al. (2018). Why not record from every channel with a CMOS scanning probe? bioRxiv, 275818. https://doi.org/10.1101/275818

  • Eversmann, B., Jenkner, M., Hofmann, F., Paulus, C., Brederlow, R., Holzapfl, B., et al. (2003). A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE Journal of Solid-State Circuits, 38(12), 2306–2317.

    Article  Google Scholar 

  • Fee, M. S., Mitra, P. P., & Kleinfeld, D. (1996). Variability of extracellular spike waveforms of cortical neurons. Journal of Neurophysiology, 76(6), 3823–3833.

    Article  CAS  Google Scholar 

  • Frey, U., Sedivy, J., Heer, F., Pedron, R., Ballini, M., Mueller, J., et al. (2010). Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE Journal of Solid-State Circuits, 45(2), 467–482.

    Article  Google Scholar 

  • Hagen, E., Ness, T. V., Khosrowshahi, A., Sørensen, C., Fyhn, M., Hafting, T., et al. (2015). ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms. Journal of Neuroscience Methods, 245, 182–204.

    Article  Google Scholar 

  • Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., & Buzsáki, G. (2000). Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. Journal of Neurophysiololgy, 84(1), 401–414.

    Article  CAS  Google Scholar 

  • Hermle, T., Schwarz, C., & Bogdan, M. (2004). Employing ICA and SOM for spike sorting of multielectrode recordings from CNS. Journal of Physiology-Paris, 98(4–6), 349–356.

    Article  Google Scholar 

  • Hilgen, G., Sorbaro, M., Pirmoradian, S., Muthmann, J.-O., Kepiro, I. E., Ullo, S., et al. (2017). Unsupervised spike sorting for large-scale, high-density multielectrode arrays. Cell Reports, 18(10), 2521–2532.

    Article  CAS  Google Scholar 

  • Hill, D. N., Mehta, S. B., & Kleinfeld, D. (2011). Quality metrics to accompany spike sorting of extracellular signals. Journal of Neuroscience, 31(24), 8699–705.

    Article  CAS  Google Scholar 

  • Hromádka, T., Deweese, M. R., & Zador, A. M. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biology, 6(1), e16.

    Article  Google Scholar 

  • Jun, J. J., Mitelut, C., Lai, C., Gratiy, S., Anastassiou, C., & Harris, T. D. (2017a). Real-time spike sorting platform for high-density extracellular probes with ground-truth validation and drift correction. bioRxiv, 101030. https://doi.org/10.1101/101030

  • Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., et al. (2017b). Fully integrated silicon probes for high-density recording of neural activity. Nature, 551(7679), 232.

    Article  CAS  Google Scholar 

  • Kadir, S. N., Goodman, D. F., & Harris, K. D. (2014). High-dimensional cluster analysis with the masked EM algorithm. Neural Computation, 26(11), 2379–2394.

    Article  Google Scholar 

  • Lee, J. H., Carlson, D. E., Razaghi, H. S., Yao, W., Goetz, G. A., Hagen, E., et al. (2017). Yass: Yet another spike sorter. In Advances in neural information processing systems (pp. 4005–4015).

    Google Scholar 

  • Lewicki, M. S. (1998, January). A review of methods for spike sorting: The detection and classification of neural action potentials. Network, 9, R53–R78.

    Article  CAS  Google Scholar 

  • Lopez, C. M., Mitra, S., Putzeys, J., Raducanu, B., Ballini, M., Andrei, A., et al. (2016). 22.7 a 966-electrode neural probe with 384 configurable channels in 0.13 μm SOI CMOS. In 2016 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 392–393). San Fransisco, CA: IEEE.

    Chapter  Google Scholar 

  • Marques-Smith, A., Neto, J. P., Lopes, G., Nogueira, J., Calcaterra, L., Frazo, J., (2018). Recording from the same neuron with high-density CMOS probes and patch-clamp: A ground-truth dataset and an experiment in collaboration. bioRxiv, 370080. https://doi.org/10.1101/370080

  • Müller, J., Ballini, M., Livi, P., Chen, Y., Radivojevic, M., Shadmani, A., et al. (2015). High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab on a Chip, 15(13), 2767–2780.

    Article  Google Scholar 

  • Muthmann, J.-O., Amin, H., Sernagor, E., Maccione, A., Panas, D., Berdondini, L., et al. (2015, December). Spike detection for large neural populations using high density multielectrode arrays. Frontiers in Neuroinformatics, 9, 1–21.

    Article  Google Scholar 

  • Neto, J. P., Lopes, G., Frazão, J., Nogueira, J., Lacerda, P., Baião, P., et al. (2016). Validating silicon polytrodes with paired juxtacellular recordings: Method and dataset. Journal of Neurophysiology, 116(2), 892–903.

    Article  CAS  Google Scholar 

  • Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. J., & Frey, U. (2015, January). Revealing neuronal function through microelectrode array recordings. Frontiers in Neuroscience, 9, 423.

    Google Scholar 

  • Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M., & Harris, K. D. (2016). Fast and accurate spike sorting of high-channel count probes with KiloSort. In Advances in neural information processing systems (pp. 4448–4456).

    Google Scholar 

  • Panas, D., Amin, H., Maccione, A., Muthmann, O., van Rossum, M., Berdondini, L., et al. (2015). Sloppiness in spontaneously active neuronal networks. Journal of Neuroscience, 35(22), 8480–8492.

    Article  CAS  Google Scholar 

  • Quiroga, R. Q., Nadasdy, Z., & Ben-Shaul, Y. (2004). Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Computation, 16(8), 1661–87.

    Article  Google Scholar 

  • Rey, H. G., Pedreira, C., & Quian Quiroga, R. (2015). Past, present and future of spike sorting techniques. Brain Research Bulletin, 119, 106–117.

    Article  Google Scholar 

  • Rossant, C., Kadir, S. N., Goodman, D. F. M., Schulman, J., Hunter, M. L. D., Saleem, A. B., et al. (2016). Spike sorting for large, dense electrode arrays. Nature Neuroscience, 19(4), 634–641.

    Article  CAS  Google Scholar 

  • Segev, R., Goodhouse, J., Puchalla, J., & Berry II, M. J. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7(10), 1155.

    Article  Google Scholar 

  • Shoham, S., Fellows, M. R., & Normann, R. A. (2003). Robust, automatic spike sorting using mixtures of multivariate t-distributions. Journal of Neuroscience Methods, 127(2), 111–122.

    Article  Google Scholar 

  • Ventura, V., & Gerkin, R. C. (2012). Accurately estimating neuronal correlation requires a new spike-sorting paradigm. Proceedings of the National Academy of Sciences, 109(19), 7230–7235.

    Article  CAS  Google Scholar 

  • Wood, F., & Black, M. J. (2008). A nonparametric Bayesian alternative to spike sorting. Journal of Neuroscience Methods, 173(1), 1–12.

    Article  Google Scholar 

  • Yger, P., Spampinato, G. L., Esposito, E., Lefebvre, B., Deny, S., Gardella, C., et al. (2018). A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo. eLife, 7, e34518.

    Article  Google Scholar 

  • Yuan, X., Kim, S., Juyon, J., D’Urbino, M., Bullmann, T., Chen, Y., et al. (2016). A microelectrode array with 8,640 electrodes enabling simultaneous full-frame readout at 6.5 kfps and 112-channel switch-matrix readout at 20 ks/s. In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits) (pp. 1–2). Honolulu, HI: IEEE.

    Google Scholar 

  • Zhang, J., Laiwalla, F., Kim, J. A., Urabe, H., Van Wagenen, R., Song, Y.-K., et al. (2009). Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. Journal of neural engineering, 6(5), 055007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias H. Hennig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hennig, M.H., Hurwitz, C., Sorbaro, M. (2019). Scaling Spike Detection and Sorting for Next-Generation Electrophysiology. In: Chiappalone, M., Pasquale, V., Frega, M. (eds) In Vitro Neuronal Networks. Advances in Neurobiology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-11135-9_7

Download citation

Publish with us

Policies and ethics