Advertisement

Advances in Human Stem Cell-Derived Neuronal Cell Culturing and Analysis

  • Laura Ylä-Outinen
  • Jarno M. A. Tanskanen
  • Fikret E. Kapucu
  • Anu Hyysalo
  • Jari A. K. Hyttinen
  • Susanna NarkilahtiEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 22)

Abstract

This chapter provides an overview of the current stage of human in vitro functional neuronal cultures, their biological application areas, and modalities to analyze their behavior. During the last 10 years, this research area has changed from being practically non-existent to one that is facing high expectations. Here, we present a case study as a comprehensive short history of this process based on extensive studies conducted at NeuroGroup (University of Tampere) and Computational Biophysics and Imaging Group (Tampere University of Technology), ranging from the differentiation and culturing of human pluripotent stem cell (hPSC)-derived neuronal networks to their electrophysiological analysis. After an introduction to neuronal differentiation in hPSCs, we review our work on their functionality and approaches for extending cultures from 2D to 3D systems. Thereafter, we discuss our target applications in neuronal developmental modeling, toxicology, drug screening, and disease modeling. The development of signal analysis methods was required due to the unique functional and developmental properties of hPSC-derived neuronal cells and networks, which separate them from their much-used rodent counterparts. Accordingly, a line of microelectrode array (MEA) signal analysis methods was developed. This work included the development of action potential spike detection methods, entropy-based methods and additional methods for burst detection and quantification, joint analysis of spikes and bursts to analyze the spike waveform compositions of bursts, assessment methods for network synchronization, and computational simulations of synapses and neuronal networks.

Keywords

Human neurons Human pluripotent stem cells Microelectrode arrays Signal analysis 

Notes

Acknowledgements

The authors would like to thank Tiina Joki, PhD, and Outi Paloheimo, MSc, for their help with figure preparation. This work was funded by the Human Spare Parts Project funded by Business Finland (formerly the Finnish Funding Agency for Technology and Innovation (TEKES)), 3DNeuroN project in the European Union’s Seventh Framework Programme, Future and Emerging Technologies (grant agreement number 296590), Academy of Finland grants (LY grant number 286990 and SN grant numbers 311017 and 312414), and Jane and Aatos Erkko Foundation (JMAT grant “Biological Neuronal Communications and Computing with ICT”).

References

  1. Athauda, D., & Foltynie, T. (2015). The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nature Reviews. Neurology, 11(1), 25–40.CrossRefPubMedGoogle Scholar
  2. Avior, Y., Sagi, I., & Benvenisty, N. (2016). Pluripotent stem cells in disease modelling and drug discovery. Nature Reviews. Molecular Cell Biology, 17(3), 170–182.CrossRefPubMedGoogle Scholar
  3. Bal-Price, A. K., Hogberg, H. T., Buzanska, L., Lenas, P., van Vliet, E., & Hartung, T. (2010). In vitro developmental neurotoxicity (DNT) testing: Relevant models and endpoints. Neurotoxicology, 31(5), 545–554.  https://doi.org/10.1016/j.neuro.2009.11.006 CrossRefGoogle Scholar
  4. Brafman, D. A., Moya, N., Allen-Soltero, S., Fellner, T., Robinson, M., McMillen, Z. L., et al. (2013). Analysis of SOX2-expressing cell populations derived from human pluripotent stem cells. Stem Cell Reports, 1(5), 464–478.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Broccoli, V., Giannelli, S. G., & Mazzara, P. G. (2014). Modeling physiological and pathological human neurogenesis in the dish. Frontiers in Neuroscience, 8, 183.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Broguiere, N., Isenmann, L., & Zenobi-Wong, M. (2016). Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks. Biomaterials, 99, 47–55.CrossRefPubMedGoogle Scholar
  7. Burggren, W. W., & Monticino, M. G. (2005). Assessing physiological complexity. The Journal of Experimental Biology, 208, 3221–3232.CrossRefPubMedGoogle Scholar
  8. Busskamp, V., Lewis, N. E., Guye, P., Ng, A. H. M., Shipman, S. L., Byrne, S. M., et al. (2014). Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology, 10, 760.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Canals, I., Soriano, J., Orlandi, J. G., Torrent, R., Richaud-Patin, Y., Jiménez-Delgado, S., et al. (2015). Activity and high-order effective connectivity alterations in sanfilippo C patient-specific neuronal networks. Stem Cell Reports, 5(4), 546–557.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carpenter, M. K., Inokuma, M. S., Denham, J., Mujtaba, T., Chiu, C.-P., & Rao, M. S. (2001). Enrichment of neurons and neural precursors from human embryonic stem cells. Experimental Neurology, 172(2), 383–397.CrossRefPubMedGoogle Scholar
  11. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen, L., Deng, Y., Luo, W., Wang, Z., & Zeng, S. (2009). Detection of bursts in neuronal spike trains by the mean inter-spike interval method. Progress in Natural Science, 19(2), 229–235.CrossRefGoogle Scholar
  13. Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., & van Pelt, J. (2005). Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons. Neurocomputing, 65–66, 653–662.CrossRefGoogle Scholar
  14. Christodoulou, C., & Bugmann, G. (2001). Coefficient of variation vs. mean interspike interval curves: What do they tell us about the brain? Neurocomputing, 38-40, 1141–1149.CrossRefGoogle Scholar
  15. Cotterill, E., Charlesworth, P., Thomas, C. W., Paulsen, O., & Eglen, S. J. (2016). A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks. Journal of Neurophysiology, 116(2), 306–321.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Douvaras, P., Wang, J., Zimmer, M., Hanchuk, S., O’Bara, M. A., Sadiq, S., et al. (2014). Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports, 3(2), 250–259.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Edgar, J. M., Robinson, M., & Willerth, S. M. (2017). Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells. Acta Biomaterialia, 51, 237–245.CrossRefPubMedGoogle Scholar
  18. Erceg, S., Ronaghi, M., & Stojković, M. (2009). Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells, 27(1), 78–87.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Falk, A., Koch, P., Kesavan, J., Takashima, Y., Ladewig, J., Alexander, M., et al. (2012). Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One, 7(1), e29597.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Frega, M., Tedesco, M., Massobrio, P., Pesce, M., & Martinoia, S. (2014). Network dynamics of 3D engineered neuronal cultures: A new experimental model for in-vitro electrophysiology. Scientific Reports, 4, 5489.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Frega, M., van Gestel, S. H. C., Linda, K., van der Raadt, J., Keller, J., Van Rhijn, J.-R., et al. (2017). Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays. Journal of Visualized Experiments, 119. https://doi.org/10.3791/54900Google Scholar
  22. Fritsche, E., Grandjean, P., Crofton, K. M., Aschner, M., Goldberg, A., Heinonen, T., et al. (2018). Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicology and Applied Pharmacology.  https://doi.org/10.1016/j.taap.2018.02.004
  23. Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS One, 4(8), e 6482.CrossRefGoogle Scholar
  24. Goparaju, S. K., Kohda, K., Ibata, K., Soma, A., Nakatake, Y., Akiyama, T., et al. (2017). Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors. Scientific Reports, 7, 42367.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heikkilä, T. J., Ylä-Outinen, L., Tanskanen, J. M. A., Lappalainen, R. S., Skottman, H., Suuronen, R., et al. (2009). Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro. Experimental Neurology, 218(1), 109–116.CrossRefPubMedGoogle Scholar
  26. Hopkins, A. M., DeSimone, E., Chwalek, K., & Kaplan, D. L. (2015). 3D in vitro modeling of the central nervous system. Progress in Neurobiology, 125, 1–25.CrossRefPubMedGoogle Scholar
  27. Hyysalo, A. (2017). In vitro culturing conditions for human pluripotent stem cell-derived neural cells: Tissue engineering applications for spinal cord injury repair (Dissertation, Tampere University Press, 2017).Google Scholar
  28. Hyysalo, A., Ristola, M., Joki, T., Honkanen, M., Vippola, M., & Narkilahti, S. (2017a). Aligned poly(ε-caprolactone) nanofibers guide the orientation and migration of human pluripotent stem cell-derived neurons, astrocytes, and oligodendrocyte precursor cells in vitro. Macromolecular Bioscience, 17(7), 1600517.CrossRefGoogle Scholar
  29. Hyysalo, A., Ristola, M., Mäkinen, M. E.-L., Häyrynen, S., Nykter, M., & Narkilahti, S. (2017b). Laminin α5 substrates promote survival, network formation and functional development of human pluripotent stem cell-derived neurons in vitro. Stem Cell Research, 24, 118–127.CrossRefPubMedGoogle Scholar
  30. Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS One, 6(11), e27431.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Johnstone, A. F. M., Gross, G. W., Weiss, D. G., Schroeder, O. H.-U., Gramowski, A., & Shafer, T. J. (2010). Microelectrode arrays: A physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology, 31(4), 331–350.CrossRefPubMedGoogle Scholar
  32. Kapucu, F. E. (2015). Joint analysis of extracellular spike waveforms and neuronal network bursts. [Software] Available via MATLAB Central File Exchange, The MathWorks, Inc. Accessed March 5, 2018, from https://se.mathworks.com/matlabcentral/fileexchange/54277
  33. Kapucu, F. E. (2016a). Spectral entropy based neuronal network synchronization analysis: CorSE. [Software] Available via MATLAB Central File Exchange, The MathWorks, Inc. Accessed March 5, 2018, from https://se.mathworks.com/matlabcentral/fileexchange/59626
  34. Kapucu, F. E. (2016b). Methods to enhance information extraction from microelectrode array measurements of neuronal networks (Dissertation, Tampere University of Technology, vol. 1438, 2016).Google Scholar
  35. Kapucu, F. E., Mäkinen, M. E.-L., Tanskanen, J. M. A., Ylä-Outinen, L., Narkilahti, S., & Hyttinen, J. A. K. (2016b). Joint analysis of extracellular spike waveforms and neuronal network bursts. Journal of Neuroscience Methods, 259, 143–155.CrossRefPubMedGoogle Scholar
  36. Kapucu, F. E., Mikkonen, J. E., Tanskanen, J. M. A., & Hyttinen J. A. K.. (2015). Quantification and automatized adaptive detection of in vivo and in vitro neuronal bursts based on signal complexity. In Proceedings of 2015 37th annual international conference of the engineering in medicine and biology society (EMBC), Milan, Italy (pp. 4729–4732).Google Scholar
  37. Kapucu, F. E., Mikkonen, J. E., Tanskanen, J. M. A., & Hyttinen J. A. K.. (2016a). Analyzing the feasibility of time correlated spectral entropy for the assessment of neuronal synchrony. In 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC), Orlando (pp. 1595–1598).Google Scholar
  38. Kapucu, F. E., Tanskanen, J. M. A., Christophe, F., Mikkonen, T., & Hyttinen, J. A. K.. (2017a). Evaluation of the effective and functional connectivity estimators for microelectrode array recordings during in vitro neuronal network maturation. In H. Eskola, O. Väisänen, J. Viik, et al. (Eds.), European medical and biological engineering conference, Nordic-Baltic conference on biomedical engineering and medical physics (EMBEC & NBC 2017), Tampere, Finland, June 2017. IFMBE proceedings (Vol. 65, pp. 1105–1108). Singapore: Springer.Google Scholar
  39. Kapucu, F. E., Tanskanen, J. M. A., Mikkonen, J. E., Ylä-Outinen, L., Narkilahti, S., & Hyttinen, J. A. K. (2012). Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics. Frontiers in Computational Neuroscience, 6, 38.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kapucu, F. E., Välkki, I., Christophe, F., Tanskanen, J. M. A., Johansson, J., Mikkonen, T., et al.. (2017b). On electrophysiological signal complexity during biological neuronal network development and maturation. In 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Seogwipo, South Korea (pp. 3333–3338).Google Scholar
  41. Kapucu, F. E., Välkki, I., Mikkonen, J. E., Leone, C., Lenk, K., Tanskanen, J. M. A., et al. (2016c). Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements. Frontiers in Computational Neuroscience, 10, 112.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Karvinen, J., Joki, T., Ylä-Outinen, L., Koivisto, J. T., Narkilahti, S., & Kellomäki, M. (2018). Soft hydrazone crosslinked hyaluronan- and alginate-based hydrogels as 3D supportive matrices for human pluripotent stem cell-derived neuronal cells. Reactive and Functional Polymers, 124, 29–39.CrossRefGoogle Scholar
  43. Kasteel, E. E. J., & Westerink, R. H. S. (2017). Comparison of the acute inhibitory effects of tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes. Toxicology Letters, 270, 12–16.CrossRefPubMedGoogle Scholar
  44. Kawada, J., Kaneda, S., Kirihara, T., Maroof, A., Levi, T., Eggan, K., et al. (2017). Generation of a motor nerve organoid with human stem cell-derived neurons. Stem Cell Reports, 9(5), 1441–1449.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kelava, I., & Lancaster, M. A. (2016). Dishing out mini-brains: Current progress and future prospects in brain organoid research. Developmental Biology, 420(2), 199–209.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kirkeby, A., Grealish, S., Wolf, D. A., Nelander, J., Wood, J., Lundblad, M., et al. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports, 1(6), 703–714.CrossRefPubMedGoogle Scholar
  47. Koivisto, J. T., Joki, T., Parraga, J. E., Pääkkönen, R., Ylä-Outinen, R., Salonen, L., et al. (2017). Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomedical Materials, 12(2), 025014.CrossRefPubMedGoogle Scholar
  48. Krencik, R., Weick, J. P., Liu, Y., Zhang, Z.-J., & Zhang, S.-C. (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nature Biotechnology, 29(6), 528–534.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kreutzer, J., Ylä-Outinen, L., Kärnä, P., Kaarela, T., Mikkonen, J., Skottman, H., et al. (2012). Structured PDMS chambers for enhanced human neuronal cell activity on MEA platforms. Journal of Bionic Engineering, 9(1), 1–10.CrossRefGoogle Scholar
  50. Kreutzer, J., Ylä-Outinen, L., Mäki, A.-J., Ristola, M., Narkilahti, S., & Kallio, P. (2017). Cell culture chamber with gas supply for prolonged recording of human neuronal cells on microelectrode array. Journal of Neuroscience Methods, 280, 27–35.CrossRefPubMedGoogle Scholar
  51. Lappalainen, R. S., Salomäki, M., Ylä-Outinen, L., Heikkilä, T. J., Hyttinen, J. A. K., Pihlajamäki, H., et al. (2010). Similarly derived and cultured hESC lines show variation in their developmental potential towards neuronal cells in long-term culture. Regenerative Medicine, 5(5), 749–762.CrossRefPubMedGoogle Scholar
  52. Lee, J., Woo, D.-H., Park, H.-J., Park, K., Ko, D. S., & Kim, J.-H. (2017). Human induced pluripotent stem cell line with cytochrome P450 enzyme polymorphism (CYP2C19*2/CYP3A5*3C) generated from lymphoblastoid cells. Stem Cell Research, 27, 34–37.CrossRefPubMedGoogle Scholar
  53. Lewicki, M. S. (1998). A review of methods for spike sorting: The detection and classification of neural action potentials. Network: Computation in Neural Systems, 9(4), R53–R78.CrossRefGoogle Scholar
  54. Mäkinen, M. E.-L., Ylä-Outinen, L., & Narkilahti, S. (2018). GABA and gap junctions in the development of synchronized activity in human pluripotent stem cell-derived neural networks. Frontiers in Cellular Neuroscience, 12, 56.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Markou, A., Chiamulera, C., Geyer, M. A., Tricklebank, M., & Steckler, T. (2009). Removing obstacles in neuroscience drug discovery: The future path for animal models. Neuropsychopharmacology, 34(1), 74–89.CrossRefPubMedGoogle Scholar
  56. Martynoga, B., Drechsel, D., & Guillemot, F. (2012). Molecular control of neurogenesis: A view from the mammalian cerebral cortex. Cold Spring Harbor Perspectives in Biology, 4, a008359.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Maury, Y., Côme, J., Piskorowski, R. A., Salah-Mohellibi, N., Chevaleyre, V., Peschanski, M., et al. (2015). Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nature Biotechnology, 33(1), 89–96.CrossRefPubMedGoogle Scholar
  58. Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 2(5), e439.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mertens, J., Marchetto, M. C., Bardy, C., & Gage, F. H. (2016). Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews. Neuroscience, 17(7), 424–437.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Miller, J. A., Horvath, S., & Geschwind, D. H. (2010). Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12698–12703.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Muratore, C. R., Srikanth, P., Callahan, D. G., & Young-Pearse, T. L. (2014). Comparison and optimization of hiPSC forebrain cortical differentiation protocols. PLoS One, 9(8), e105807.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nat, R., Nilbratt, M., Narkilahti, S., Winblad, B., Hovatta, O., & Nordberg, A. (2007). Neurogenic neuroepithelial and radial glial cells generated from six human embryonic stem cell lines in serum-free suspension and adherent cultures. Glia, 55(4), 385–399.CrossRefPubMedGoogle Scholar
  63. Nedergaard, M., Ransom, B., & Goldman, S. A. (2003). New roles for astrocytes: Redefining the functional architecture of the brain. Trends in Neurosciences, 26(10), 523–530.CrossRefPubMedGoogle Scholar
  64. Odawara, A., Katoh, H., Matsuda, N., & Suzuki, I. (2016a). Induction of long-term potentiation and depression phenomena in human induced pluripotent stem cell-derived cortical neurons. Biochemical and Biophysical Research Communications, 469(4), 856–862.CrossRefPubMedGoogle Scholar
  65. Odawara, A., Katoh, H., Matsuda, N., & Suzuki, I. (2016b). Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Scientific Reports, 6, 26181.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Odawara, A., Saitoh, Y., Alhebshi, A. H., Gotoh, M., & Suzuki, I. (2014). Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture. Biochemical and Biophysical Research Communications, 443(4), 1176–1181.CrossRefPubMedGoogle Scholar
  67. Paavilainen, T., Pelkonen, A., Mäkinen, M. E.-L., Peltola, M., Huhtala, H., Fayuk, D., et al. (2018). Effect of prolonged differentiation on functional maturation of human pluripotent stem cell-derived neuronal cultures. Stem Cell Research, 27, 151–161.CrossRefPubMedGoogle Scholar
  68. Pamies, D., Barreras, P., Block, K., Makri, G., Kumar, A., Wiersma, D., et al. (2016). A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX, 34(3), 362–337.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Pappas, J. J., & Yang, P. C. (2008). Human ESC vs. iPSC—Pros and cons. Journal of Cardiovascular Translational Research, 1(2), 96–99.CrossRefPubMedGoogle Scholar
  70. Park, J. W., Vahidi, B., Taylor, A. M., Rhee, S. W., & Jeon, N. L. (2006). Microfluidic culture platform for neuroscience research. Nature Protocols, 1(4), 2128–2136.CrossRefPubMedGoogle Scholar
  71. Paşca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 12(7), 671–678.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Pasquale, V., Martinoia, S., & Chiappalone, M. (2010). A self-adapting approach for the detection of bursts and network bursts in neuronal cultures. Journal of Computational Neuroscience, 29(1–2), 213–229.CrossRefPubMedGoogle Scholar
  73. Pautot, S., Wyart, C., & Isacoff, E. Y. (2008). Colloid-guided assembly of oriented 3D neuronal networks. Nature Methods, 5(8), 735–740.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pawlowski, M., Ortmann, D., Bertero, A., Tavares, J. M., Pedersen, R. A., Vallier, L., et al. (2017). Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes. Stem Cell Reports, 8(4), 803–812.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Reubinoff, B. E., Itsykson, P., Turetsky, T., Pera, M. F., Reinhartz, E., Itzik, A., et al. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 19(12), 1134–1140.CrossRefPubMedGoogle Scholar
  76. Roopun, A. K., Simonotto, J. D., Pierce, M. L., Jenkins, A., Nicholson, C., Schofield, I. S., et al. (2010). A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 338–343.CrossRefPubMedGoogle Scholar
  77. Roybon, L., Lamas, N. J., Garcia-Diaz, A., Yang, E. J., Sattler, R., Jackson-Lewis, V., et al. (2013). Human stem cell-derived spinal cord astrocytes with defined mature or reactive phenotypes. Cell Reports, 4(5), 1035–1048.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Schutte, R. J., Xie, Y., Ng, N. N., Figueroa, P., Pham, A. T., & O’Dowd, D. K. (2018). Astrocyte-enriched feeder layers from cryopreserved cells support differentiation of spontaneously active networks of human iPSC-derived neurons. Journal of Neuroscience Methods, 294, 91–101.CrossRefPubMedGoogle Scholar
  79. Seidel, D., Jahnke, H.-G., Englich, B., Girard, M., & Robitzki, A. A. (2017). In vitro field potential monitoring on a multi-microelectrode array for the electrophysiological long-term screening of neural stem cell maturation. Analyst, 142(11), 1929–1937.CrossRefPubMedGoogle Scholar
  80. Selinger, J. V., Kulagina, N. V., O’Shaughnessy, T. J., Ma, W., & Pancrazio, J. J. (2007). Methods for characterizing interspike intervals and identifying bursts in neuronal activity. Journal of Neuroscience Methods, 162(1–2), 64–71.CrossRefPubMedGoogle Scholar
  81. Shuler, M. L., & Hickman, J. J. (2014). Toward in vitro models of brain structure and function. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13682–13683.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Simão, D., Pinto, C., Piersanti, S., Weston, A., Peddie, C. J., Bastos, A. E. P., et al. (2015). Modeling human neural functionality in vitro: Three-dimensional culture for dopaminergic differentiation. Tissue Engineering. Part A, 21(3–4), 654–668.CrossRefPubMedGoogle Scholar
  83. Subramaniyam, N. P. (2016). Recurrence network analysis of EEG signals: A geometric approach (Dissertation, Tampere University of Technology, Vol. 1364, 2016).Google Scholar
  84. Subramaniyam, N. P., & Hyttinen, J. (2015). Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks. Physical Review E, 91(2), 022927.CrossRefGoogle Scholar
  85. Subramaniyam, N. P., Hyttinen, J., Hatsopoulos, N. G., & Takahashi, K.. (2015). Recurrence network analysis of wide band oscillations of local field potentials from the primary motor cortex reveals rich dynamics. In 2015 7th international IEEE/EMBS conference on neural engineering (NER), Montpellier, France (pp. 960–963).Google Scholar
  86. Suzuki, I. K., & Vanderhaeghen, P. (2015). Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. Development, 142(18), 3138–3150.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Tanskanen, J. (2017). Automatic objective neuronal spike detection. Available via MATLAB Central File Exchange, The MathWorks, Inc. Accessed March 5, 2018, from https://se.mathworks.com/matlabcentral/fileexchange/55227
  89. Tanskanen, J. M. A., Kapucu, F. E., Vornanen, I., & Hyttinen, J. A. K.. (2016). Automatic objective thresholding to detect neuronal action potentials. In 2016 24th European signal processing conference (EUSIPCO), Budapest, Hungary, August–September 2016 (pp. 662–666).Google Scholar
  90. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Toivanen, M., Pelkonen, A., Mäkinen, M., Ylä-Outinen, L., Sukki, L., Kallio, P., et al. (2017). Optimised PDMS tunnel devices on MEAs increase the probability of detecting electrical activity from human stem cell-derived neuronal networks. Frontiers in Neuroscience, 11, 606.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Toivonen, S., Ojala, M., Hyysalo, A., Ilmarinen, T., Rajala, K., Pekkanen-Mattila, M., et al. (2013). Comparative analysis of targeted differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells reveals variability associated with incomplete transgene silencing in retrovirally derived hiPSC lines. Stem Cells Translational Medicine, 2(2), 83–93.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tukker, A. M., de Groot, M. W. G. D. M., Wijnolts, F. M. J., Kasteel, E. E. J., Hondebrink, L., & Westerink, R. (2016). Is the time right for in vitro neurotoxicity testing using human iPSC-derived neurons? ALTEX, 33(3), 261–271.CrossRefPubMedGoogle Scholar
  94. Välkki, I. A., Lenk, K., Mikkonen, J. E., Kapucu, F. E., & Hyttinen, J. A. K. (2017). Network-wide adaptive burst detection depicts neuronal activity with improved accuracy. Frontiers in Computational Neuroscience, 11, 40.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wagenaar, D. A., Pine, J., & Potter, S. M. (2006). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience, 7, 11.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wilson, S. B., & Emerson, R. (2002). Spike detection: A review and comparison of algorithms. Clinical Neurophysiology, 113(12), 1873–1881.CrossRefPubMedGoogle Scholar
  97. Xie, Y., Schutte, R. J., Ng, N. N., Ess, K. C., Schwartz, P. H., & O’Dowd, D. K. (2017). Reproducible and efficient generation of functionally active neurons from human hiPSCs for preclinical disease modeling. Stem Cell Research, 26, 84–94.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Xu, T., Molnar, P., Gregory, C., Das, M., Boland, T., & Hickman, J. J. (2009). Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. Biomaterials, 30(26), 4377–4383.CrossRefPubMedGoogle Scholar
  99. Ylä-Outinen, L., Heikkilä, J., Skottman, H., Suuronen, R., Äänismaa, R., & Narkilahti, S. (2010). Human cell-based micro electrode array platform for studying neurotoxicity. Frontiers in Neuroengineering, 3, 111.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Ylä-Outinen, L., Joki, T., Varjola, M., Skottman, H., & Narkilahti, S. (2014). Three-dimensional growth matrix for human embryonic stem cell-derived neuronal cells. Journal of Tissue Engineering and Regenerative Medicine, 8(3), 186–194.CrossRefPubMedGoogle Scholar
  101. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.CrossRefGoogle Scholar
  102. Zirra, A., Wiethoff, S., & Patani, R. (2016). Neural conversion and patterning of human pluripotent stem cells: A developmental perspective. Stem Cells International, 2016, 8291260.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laura Ylä-Outinen
    • 1
  • Jarno M. A. Tanskanen
    • 2
  • Fikret E. Kapucu
    • 3
    • 4
  • Anu Hyysalo
    • 1
  • Jari A. K. Hyttinen
    • 2
  • Susanna Narkilahti
    • 1
    Email author
  1. 1.NeuroGroup, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
  2. 2.Computational Biophysics and Imaging Group, Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
  3. 3.Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus UniversityAarhusDenmark
  4. 4.Department of BiomedicineAarhus UniversityAarhusDenmark

Personalised recommendations