Advertisement

Hydrogen Peroxide and Nitric Oxide Metabolism in Chloroplasts

  • Ana JiménezEmail author
  • Mª Carmen Martí
  • Daymi Camejo
  • Francisca Sevilla
Chapter

Abstract

Chloroplasts are ubiquitous organelles with a notable oxidative metabolism that are involved in free energy transduction through photophosphorylation. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to determine the efficiency of carbon assimilation. These provide significant evidence that chloroplasts are key cellular sites of reactive oxygen species (ROS) production, including molecules like superoxide (O2•–) and H2O2. In addition to ROS, there are compelling indications that nitric oxide (NO) can be generated in chloroplasts by both reductive and oxidative pathways. NO is involved in many physiological and biochemical processes in plants, including photosynthesis. However, many unanswered questions remain concerning how, when, and where NO is generated (enzymatically or nonenzymatically) in higher plants. ROS and reactive nitrogen species (RNS) play a key role in signaling, but they can also be deleterious via oxidation of cell components when overproduced, as a consequence of redox imbalance and/or adverse conditions. In chloroplasts, besides the redox state and regulation of thiol groups of cysteinyl residues in proteins, identification of other types of posttranslational protein modifications (PTMs) such as Tyr nitration, S-nitrosylation, and glutathionylation has been reported. Therefore, this chapter is focused on photosynthetic light/dark reactions, antioxidant defense and thiol-based redox regulation, ROS production, NO synthesis, and its implication together with that of ROS, in PTM-mediated regulation, with the aim of drawing a picture of the importance of all of them in the regulation of the chloroplast function.

Keywords

Plant stress Chloroplast Hydrogen peroxide Nitric oxide Posttranslational modification Reactive nitrogen species Reactive oxygen species 

Notes

Acknowledgments

This work was supported by MINECO/FEDER (Project BFU2017-86585-P) and Séneca Foundation, Murcia, Spain (Project 19876/GERM/15). The authors apologize to the scientists that are not cited because of space limitations and thank Steve Hasler for proofreading the written English of the manuscript.

References

  1. Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata—ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275:2862–2872PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380PubMedCrossRefGoogle Scholar
  3. Akter S, Carpentier S, Van Breusegem F, Messens J (2017) Identification of dimedone-trapped sulfenylated proteins in plants under stress. Biochem Biophys Rep 9:106–113PubMedPubMedCentralGoogle Scholar
  4. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alkhalfioui F, Renard M, Montrichard F (2007) Unique properties of NADP-thioredoxin reductase C in legumes. J Exp Bot 58:969–978PubMedCrossRefPubMedCentralGoogle Scholar
  6. Allahverdiyeva Y, Isojärvi J, Zhang P, Aro EM (2015) Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. Life (Basel) 5:716–743Google Scholar
  7. Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustun S, Melzer M, Petersen K, Lein W, Bornke F (2010) Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22:1498–1515PubMedPubMedCentralCrossRefGoogle Scholar
  8. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 41:391–396CrossRefGoogle Scholar
  9. Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406PubMedPubMedCentralCrossRefGoogle Scholar
  10. Astier J, Besson-Bard A, Lamotte O, Bertoldo J, Bourque S, Terenzi H, Wendehenne D (2012) Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco cells. Biochem J 447:249–260PubMedCrossRefPubMedCentralGoogle Scholar
  11. Astier J, Jeandroz S, Wendehenne D (2018) Nitric oxide synthase in plants: the surprise from algae. Plant Sci 268:64–66PubMedCrossRefGoogle Scholar
  12. Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238PubMedCrossRefPubMedCentralGoogle Scholar
  13. Balsera M, Uberegui E, Schürmann P, Buchanan BB (2014) Evolutionary development of redox regulation in chloroplasts. Antiox Red Signal 21:1327–1355CrossRefGoogle Scholar
  14. Barajas-López JD, Tezycka J, Travaglia CN, Serrato AJ, Chueca A, Geigenberger TP, Sahrawy M (2012) Expression of the chloroplast thioredoxins f and m is linked to short-term changes in the sugar and thiol status in leaves of Pisum sativum. J Exp Bot 63:4887–4900PubMedCentralCrossRefGoogle Scholar
  15. Barranco-Medina S, Krell T, Finkemeier I, Sevilla F, Lazaro JJ, Dietz KJ (2007) Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxIIF from Pisum sativum. Plant Physiol Biochem 45:729–739PubMedCrossRefPubMedCentralGoogle Scholar
  16. Barranco-Medina S, Krell T, Bernier-Villamor L, Sevilla F, Lázaro JJ, Dietz KJ (2008) Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. J Exp Bot 59:3259–3269PubMedPubMedCentralCrossRefGoogle Scholar
  17. Barranco-Medina S, Lázaro JJ, Dietz KJ (2009) The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett 583:1809–1816PubMedCrossRefPubMedCentralGoogle Scholar
  18. Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupianez JA, del Rio LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bartoli CG, Tambussi EA, Fanello DD, Foyer CH (2009) Control of ascorbic acid synthesis and accumulation by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett 583:118–122PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 94:73–88CrossRefGoogle Scholar
  21. Bartoli CG, Buet A, Grozeff GG, Galatro A, Simontacchi M (2017) Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In: Hossain MA, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 177–200CrossRefGoogle Scholar
  22. Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:376–391PubMedPubMedCentralCrossRefGoogle Scholar
  23. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240PubMedCrossRefPubMedCentralGoogle Scholar
  24. Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bernier-Villamor L, Navarro E, Sevilla F, Lázaro JJ (2004) Cloning and characterization of a 2-Cysperoxiredoxin from Pisum sativum. J Exp Bot 55:2191–2199PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plants tissues. Plant Cell 16:332–341PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P, Leister D (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182PubMedCrossRefPubMedCentralGoogle Scholar
  28. Broin M (2002) The plastidic 2-Cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. Plant Cell 14:1417–1432PubMedPubMedCentralCrossRefGoogle Scholar
  29. Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215PubMedCrossRefPubMedCentralGoogle Scholar
  30. Buchanan BB, Luan S (2005) Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. J Exp Bot 56:1439–1447PubMedCrossRefPubMedCentralGoogle Scholar
  31. Calderón A, Ortiz-Espín A, Iglesias-Fernández R, Carbonero P, Pallardó FV, Sevilla F, Jiménez A (2017a) Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. Redox Biol 11:688–700PubMedPubMedCentralCrossRefGoogle Scholar
  32. Calderón A, Lázaro-Payo A, Iglesias-Baena I, Camejo D, Lázaro JJ, Sevilla F, Jiménez A (2017b) Glutathionylation of pea chloroplast 2-Cys Prx and mitochondrial PrxIIF affects their structure and peroxidase activity and sulfiredoxin deglutathionylates only the 2-Cys Prx. Front Plant Sci 8:118PubMedPubMedCentralCrossRefGoogle Scholar
  33. Calderón A, Ortiz-Espín A, Iglesias-Fernández R, Carbonero P, Pallardó FV, Sevilla F, Jiménez A (2018) Redox protein thioredoxins: function under salinity, drought and extreme temperature conditions. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 132–162Google Scholar
  34. Camejo D, Romero-Puertas MDC, Rodríguez-Serrano M, Sandalio LM, Lázaro JJ, Jiménez A, Sevilla F (2013) Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteomics 79:87–99PubMedCrossRefPubMedCentralGoogle Scholar
  35. Camejo D, Ortiz-Espín A, Lázaro JJ, Romero-Puertas MC, Lázaro-Payo A, Sevilla F, Jiménez A (2015) Functional and structural changes in plant mitochondrial PrxIIF caused by NO. J Proteomics 119:112–125PubMedCrossRefPubMedCentralGoogle Scholar
  36. Cecconi D, Orzetti S, Vandelle E, Rinalducci S, Zolla L, Delledonne M (2009) Protein nitration during defense response in Arabidopsis thaliana. Electrophoresis 30:2460–2468PubMedCrossRefPubMedCentralGoogle Scholar
  37. Cejudo FJ, Meyer AJ, Reichheld JP, Rouhier N, Traverso JA, Huber SC (2014) Thiol-based redox homeostasis and signaling. Front Plant Sci 5:266PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cerveau D, Ouahrani D, Marok MA, Blanchard L, Rey P (2016) Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status. Plant Cell Environ 39:103–119PubMedCrossRefPubMedCentralGoogle Scholar
  39. Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, López-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Corpas FJ, Barroso JB (2009) Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 60:4221–4234PubMedCrossRefPubMedCentralGoogle Scholar
  40. Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez- Rodríguez MV, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813PubMedCrossRefPubMedCentralGoogle Scholar
  41. Chaki M, Carreras A, López-Jaramillo J, Begara-Morales JC, Sánchez-Calvo B, Valderrama R, Corpas FJ, Barroso JB (2013) Tyrosine nitration provokes inhibition of sunflower carbonic anhydrase (β-CA) activity under high temperature stress. Nitric Oxide 29:30–33PubMedCrossRefPubMedCentralGoogle Scholar
  42. Chaki M, de Morales PÁ, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ, Palma JM (2015) Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Ann Bot 116:637–647PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chamizo-Ampudia A, Galvan A, Fernandez E, Llamas A (2011) The Chlamydomonas reinhardtii molybdenum cofactor enzyme crARC has a Zn-dependent activity and protein partners similar to those of its human homologue. Eukaryot Cell 10:1270–1282PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chan KX, Mabbitt PD, Phua SY, Mueller JW, Nisar N, Gigolashvili T, Stroeher E, Grassl J, Arlt W, Estavillo GM, Jackson CJ, Pogson BJ (2016) Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. Proc Natl Acad Sci U S A 113:E4567–E4576PubMedPubMedCentralCrossRefGoogle Scholar
  45. Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819PubMedPubMedCentralCrossRefGoogle Scholar
  46. Chibani K, Tarrago L, Schürmann P, Jacquot JP, Rouhier N (2011) Biochemical properties of poplar thioredoxin z. FEBS Lett 585:1077–1081PubMedCrossRefPubMedCentralGoogle Scholar
  47. Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin J, Knaff D, Miginiac-Maslow M (2003) The arabidopsis plastidial thioredoxins—new functions. Environ Exp Bot 154:134–142Google Scholar
  48. Collin V, Lamkemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff DB, Dietz KJ, Issakidis-Bourguet E (2004) Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Phys 136:4088–4095CrossRefGoogle Scholar
  49. Cooney RV, Harwood PJ, Custer LJ, Franke AA (1994) Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ Health Perspect 102:460–462PubMedPubMedCentralCrossRefGoogle Scholar
  50. Corpas FJ, Barroso JB (2014) Functional implications of peroxisomal nitric oxide (NO) in plants. Front Plant Sci 5:97PubMedPubMedCentralCrossRefGoogle Scholar
  51. Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, del Río LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254PubMedCrossRefPubMedCentralGoogle Scholar
  52. Corpas FJ, Chaki M, Leterrier M, Barroso JB (2009) Protein tyrosine nitration: a new challenge in plants. Plant Signal Behav 4:920–923PubMedPubMedCentralCrossRefGoogle Scholar
  53. Corpas FJ, Alché JD, Barroso JB (2013a) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126PubMedPubMedCentralGoogle Scholar
  54. Corpas FJ, Palma JM, del Río LA, Barroso JB (2013b) Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci 4:1–4Google Scholar
  55. Corpas FJ, Barroso JB, Palma JM, Rodríguez-Ruiz M (2017) Plant peroxisomes: a nitro-oxidative cocktail. Redox Biol 11:535–542PubMedPubMedCentralCrossRefGoogle Scholar
  56. Couturier J, Jacquot JP, Rouhier N (2013) Toward a refined classification of class I dithiol glutaredoxins from poplar: biochemical basis for the definition of two subclasses. Front Plant Sci 4:518PubMedPubMedCentralGoogle Scholar
  57. Crawford NA, Droux M, Kosower NS, Buchanan BB (1989) Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplasts. Arch Biochem Biophys 271:223–239PubMedCrossRefPubMedCentralGoogle Scholar
  58. Daloso DM, Müller K, Obata T, Florian A, Tohge T, Bottcher A, Riondet C, Bariat L, Carrari F, Nunes-Nesi A, Buchanan BB, Reichheld JP, Araújo WL, Fernie AR (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci U S A 12:1392–1400CrossRefGoogle Scholar
  59. D’Autreaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824PubMedCrossRefPubMedCentralGoogle Scholar
  60. Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459PubMedPubMedCentralCrossRefGoogle Scholar
  61. del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837PubMedCrossRefPubMedCentralGoogle Scholar
  62. del Río LA, López-Huertas E (2016) ROS generation in peroxisomes and its role in cell signalling. Plant Cell Physiol 57:1364–1376PubMedPubMedCentralGoogle Scholar
  63. de Pinto MC, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244PubMedCrossRefPubMedCentralGoogle Scholar
  64. de Pinto MC, Locato V, Sgobba A, Romero-Puertas MC, Gadaleta C, Delledonne M, De Gara L (2013) S-Nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-2 Cell. Plant Physiol 163:1766–1775PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dietz KJ (2016) Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol Cells 39:20–25PubMedPubMedCentralCrossRefGoogle Scholar
  66. Dietz KJ, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485PubMedCrossRefPubMedCentralGoogle Scholar
  67. Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SMN, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709PubMedCrossRefPubMedCentralGoogle Scholar
  68. Diner BA, Petrouleas V (1990) Formation by NO of nitrosyl adducts of redox components of the photosystem II reaction center. II: evidence that HCO3/CO2 binds to the acceptor-side non-heme iron. Biochim Biophys Acta 1015:141–149CrossRefGoogle Scholar
  69. Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333PubMedPubMedCentralCrossRefGoogle Scholar
  70. Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515PubMedCrossRefPubMedCentralGoogle Scholar
  71. Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ferreira FJ, Guo C, Coleman JR (2008) Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol 147:585–594PubMedPubMedCentralCrossRefGoogle Scholar
  73. Finkemeier I, Goodman M, Lankemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ (2005) The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J Biol Chem 280:12168–12180Google Scholar
  74. Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824PubMedCrossRefPubMedCentralGoogle Scholar
  75. Foresi N, Correa-Aragunde N, Parisi Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830PubMedPubMedCentralCrossRefGoogle Scholar
  76. Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142PubMedPubMedCentralCrossRefGoogle Scholar
  77. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedPubMedCentralCrossRefGoogle Scholar
  78. Foyer CH, Noctor G (2013) Redox signaling in plants. Antiox Red Signal 18:2087–2090CrossRefGoogle Scholar
  79. Foyer CH, Noctor G (2016) Stress-triggered redox signaling: what’s in pROSpect? Plant Cell Environ 39:951–964PubMedCrossRefPubMedCentralGoogle Scholar
  80. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100PubMedCrossRefPubMedCentralGoogle Scholar
  81. Foyer CH, Ruban AV, Noctor G (2017) Viewing oxidative stress through the lens of oxidative signaling rather than damage. Biochem J 474:877–883PubMedPubMedCentralCrossRefGoogle Scholar
  82. Galatro A, González PM, Malanga G, Robello E, Piloni NE, Puntarulo S (2013) Nitric oxide and membrane lipid peroxidation in photosynthetic and non-photosynthetic organisms under several stress conditions. Front Physiol 4:276PubMedPubMedCentralCrossRefGoogle Scholar
  83. Galetskiy D, Lohscheider JN, Kononikhin AS, Popov IA, Nikolaev EN, Adamska I (2011a) Mass spectrometric characterization of photooxidative protein modifications in Arabidopsis thaliana thylakoid membranes. Rapid Commun Mass Spectrom 25:184–190PubMedCrossRefPubMedCentralGoogle Scholar
  84. Galetskiy D, Lohscheide JN, Kononikhin AS, Popov IA, Nikolaev EN, Adamska I (2011b) Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress. Plant Mol Biol 77:461–473PubMedCrossRefPubMedCentralGoogle Scholar
  85. Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443PubMedCrossRefPubMedCentralGoogle Scholar
  86. Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plant 138:430–439PubMedCrossRefPubMedCentralGoogle Scholar
  87. Gama F, Bréhélin C, Gelhaye E, Meyer Y, Jacquot JP, Rey P, Rouhier N (2008) Functional analysis and expression characteristics of chloroplastic PrxIIE. Physiol Planta 133:599–610CrossRefGoogle Scholar
  88. García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204PubMedCrossRefPubMedCentralGoogle Scholar
  89. Gas E, Flores-Pérez Ú, Saurez-Gúeto S, Rodriguez-Concepción M (2009) Hunting for plant nitric oxide synthase provides new evidence of the central role for plastids in nitric oxide metabolism. Plant Cell 21:18–23PubMedPubMedCentralCrossRefGoogle Scholar
  90. Gelhaye E, Rouhier N, Gerard J, Jolivet Y, Gualberto J, Navrot N, Ohlsson PI, Wingsle G, Hirasawa M, Knaff DB, Wang H, Dizengremel P, Meyer Y, Jacquot JP (2004) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci U S A 101:14545–14550PubMedPubMedCentralCrossRefGoogle Scholar
  91. Gerotto C, Alboresi A, Meneghesso A, Jokel M, Suorsa M, Aro EM, Morosinotto T (2016) Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens. Proc Natl Acad Sci U S A 113:12322–12327PubMedPubMedCentralCrossRefGoogle Scholar
  92. Go YM, Jones DP (2010) Redox control systems in the nucleus: mechanisms and functions. Antioxid Redox Signal 13:489–509PubMedPubMedCentralCrossRefGoogle Scholar
  93. Gómez JM, Hernández JA, Jiménez A, del Río LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31:S11–S18PubMedCrossRefPubMedCentralGoogle Scholar
  94. Gómez JM, Jiménez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119–130PubMedCrossRefPubMedCentralGoogle Scholar
  95. Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862CrossRefGoogle Scholar
  96. Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859PubMedPubMedCentralCrossRefGoogle Scholar
  97. Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450PubMedPubMedCentralCrossRefGoogle Scholar
  98. Gupta KJ, Igamberdiev AU (2016) Reactive nitrogen species in mitochondria and their implications in plant energy status and hypoxic stress tolerance. Front Plant Sci 7:369PubMedPubMedCentralGoogle Scholar
  99. Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trend Plant Sci 6:160–168CrossRefGoogle Scholar
  100. Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63:1773–1784PubMedCrossRefPubMedCentralGoogle Scholar
  101. Gururani MA, Venkatesh J, Tran LSP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320PubMedCrossRefPubMedCentralGoogle Scholar
  102. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, New YorkCrossRefGoogle Scholar
  103. Haslekås C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB (2003) Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress. Plant Physiol 133:1148–1157PubMedPubMedCentralCrossRefGoogle Scholar
  104. Hayat S, Yadav S, Wani AS, Irfan M, Ahmad A (2011) Nitric oxide effects on photosynthetic rate growth, and antioxidant activity in tomato. Int J Veg Sci 17:333–348CrossRefGoogle Scholar
  105. Hess DT, Stamler JS (2012) Regulation by S-nitrosylation of protein posttranslational modification. J Biol Chem 287:4411–4418PubMedCrossRefPubMedCentralGoogle Scholar
  106. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166PubMedCrossRefGoogle Scholar
  107. Hill AC, Bennett JH (1970) Inhibition of apparent photosynthesis by nitrogen oxides. Atmos Environ 4:341–348CrossRefGoogle Scholar
  108. Holzmeister C, Gaupels F, Geerlof A, Sarioglu H, Sattler M, Durner J, Lindermayr C (2014) Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J Exp Bot 66:989–999PubMedPubMedCentralCrossRefGoogle Scholar
  109. Horling F, König J, Dietz KJ (2002) Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins. Plant Physiol Biochem 40:491–499CrossRefGoogle Scholar
  110. Igamberdiev AU, Ratcliffe RG, Gupta KJ (2014) Plant mitochondria: source and target for nitric oxide. Mitochondrion B 19 Pt B:329–333CrossRefGoogle Scholar
  111. Iglesias-Baena I, Barranco-Medina S, Lazaro-Payo A, Lopez-Jaramillo FJ, Sevilla F, Lazaro JJ (2010) Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin. J Exp Bot 61:1509–1521PubMedPubMedCentralCrossRefGoogle Scholar
  112. Iglesias-Baena I, Barranco-Medina S, Sevilla F, Lazaro JJ (2011) The dual-targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial peroxiredoxin. Plant Physiol 155:944–955PubMedCrossRefPubMedCentralGoogle Scholar
  113. Ischiropoulos H (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 305:776–783PubMedCrossRefPubMedCentralGoogle Scholar
  114. Jacquot JP, Vidal J, Gadal P, Schürmann P (1978) Evidence for the existence of several enzyme-specific thioredoxins in plants. FEBS Lett 96:243–246CrossRefGoogle Scholar
  115. Jasid S, Simontacchi M, Bartolic G, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255PubMedPubMedCentralCrossRefGoogle Scholar
  116. Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Signal 9:re2PubMedCrossRefPubMedCentralGoogle Scholar
  117. Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala E-M, Aro EM, Rintamäki E (2008) Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem J 412:275–285PubMedCrossRefPubMedCentralGoogle Scholar
  119. Kato H, Takemoto D, Kawakita K (2013) Proteomic analysis of S-nitrosylated proteins in potato plant. Physiol Plant 148:371–386PubMedCrossRefGoogle Scholar
  120. Kirchsteiger K, Ferrández J, Pascual MB, González M, Cejudo FJ (2012) NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. Plant Cell 24:1534–1548PubMedPubMedCentralCrossRefGoogle Scholar
  121. Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH (2014) Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol Cell 56:153–162PubMedCrossRefGoogle Scholar
  122. Kohzuma K, Froehlich JE, Davis GA, Temple JA, Minhas D, Dhingra A, Crz JA, Kramer DM (2017) The role of light–dark regulation of the chloroplast ATP synthase. Front Plant Sci 8:1248PubMedPubMedCentralCrossRefGoogle Scholar
  123. Kumar P, Tewari RK, Sharma PN (2010) Sodium nitroprusside mediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. AoB Plants 2010:plq002PubMedPubMedCentralCrossRefGoogle Scholar
  124. Laloi C, Havaux M (2015) Key players of singlet oxygen-induced cell death in plants. Front Plant Sci 6:1–9CrossRefGoogle Scholar
  125. Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:672–677PubMedCrossRefPubMedCentralGoogle Scholar
  126. Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330CrossRefGoogle Scholar
  127. Lázaro JJ, Jiménez A, Camejo D, Iglesias-Baena I, Martí M del C, Lázaro-Payo A, Barranco-Medina S, Sevilla F (2013) Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation. Front Plant Sci 4:460PubMedPubMedCentralCrossRefGoogle Scholar
  128. Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M (2003) Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett 543:87–92PubMedCrossRefPubMedCentralGoogle Scholar
  129. Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, Chu CH (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464PubMedCrossRefPubMedCentralGoogle Scholar
  130. Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930PubMedPubMedCentralCrossRefGoogle Scholar
  131. Lindermayr C, Sell S, Müller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907PubMedPubMedCentralCrossRefGoogle Scholar
  132. Liu XP, Liu XY, Zhang J, Xia ZL, Liu X, Qin HJ, Wang DW (2006) Molecular and functional characterization of sulfiredoxin homologs from higher plants. Cell Res 16:287–296PubMedCrossRefPubMedCentralGoogle Scholar
  133. Liu X, Liu B, Xue S, Cai Y, Qi W, Ch J, Xu S, Wang T, Ren H (2016) Cucumber (Cucumis sativus L.) nitric oxide synthase associated gene1 (CsNOA1) plays a role in chilling stress. Front Plant Sci 7:1652Google Scholar
  134. Locato V, Cimini S, De Gara L (2018) ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. J Exp Bot 69:3373–3391PubMedCrossRefPubMedCentralGoogle Scholar
  135. Lozano-Juste J, Colom-Moreno R, León J (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 62:3501–3517PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improves Al tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917PubMedCrossRefPubMedCentralGoogle Scholar
  137. Maldonado-Alconada AM, Echevarría-Zomeno S, Lindermayr C, Redondo-López I, Durner J, Jorrín-Novo JV (2011) Proteomic analysis of Arabidopsis protein S-nitrosylation in response to inoculation with Pseudomonas syringae. Acta Physiol Plant 33:1493–1514CrossRefGoogle Scholar
  138. Manjunatha G, Gupta KJ, Lokesh V, Mur LA, Neelwarne B (2012) Nitric oxide counters ethylene effects on ripening fruits. Plant Signal Behav 7:476–483PubMedPubMedCentralCrossRefGoogle Scholar
  139. Martí MC, Olmos E, Calvete JJ, Díaz I, Barranco-Medina S, Whelan J, Lázaro JJ, Sevilla F, Jiménez A (2009) Mitochondrial and nuclear localization of a novel pea thioredoxin: identification of its mitochondrial target proteins. Plant Physiol 150:646–657PubMedPubMedCentralCrossRefGoogle Scholar
  140. Martí M, Florez-Sarasa I, Camejo D, Ribas-Carbó M, Lázaro J, Sevilla F, Jiménez A (2011) Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. J Exp Bot 62:3863–3874PubMedPubMedCentralCrossRefGoogle Scholar
  141. Martin MN, Tarczynski MC, Shen B, Leustek T (2005) The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth Res 86:309–323PubMedCrossRefPubMedCentralGoogle Scholar
  142. Marty L, Siala W, Schwarzländer M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 106:9109–9114PubMedPubMedCentralCrossRefGoogle Scholar
  143. Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2012) H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem 287:11717–11729PubMedPubMedCentralCrossRefGoogle Scholar
  144. Meng L, Wong JH, Feldman LJ, Lemaux PG, Buchanan BB (2010) A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci U S A 107:3900–3905PubMedPubMedCentralCrossRefGoogle Scholar
  145. Mestres-Ortega D, Meyer Y (1999) The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 240:307–316PubMedCrossRefPubMedCentralGoogle Scholar
  146. Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C, Meyer Y (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antiox Redox Sign 17:1124–1160CrossRefGoogle Scholar
  147. Michelet L, Krieger-Liszkay A (2012) Reactive oxygen intermediates produced by photosynthetic electron transport are enhanced in short-day grown plants. Biochim Biophys Acta 1817:1306–1313PubMedCrossRefPubMedCentralGoogle Scholar
  148. Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD (2013) Redox regulation of the Calvin-Benson cycle: something old, something new. Front Plant Sci 4:470PubMedPubMedCentralCrossRefGoogle Scholar
  149. Misra AN, Vladkova R, Singh R, Misra M, Dobrikova AG, Apostolova EL (2014) Action and target sites of nitric oxide in chloroplasts. Nitric Oxide 39:35–45PubMedCrossRefPubMedCentralGoogle Scholar
  150. Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004) Reactive oxygen gene network of plants. Trend Plant Sci 9:490–498CrossRefGoogle Scholar
  151. Mock HP, Dietz KJ (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim Biophys Acta 1864:967–973PubMedCrossRefPubMedCentralGoogle Scholar
  152. Modolo LV, Augusto O, Almeida IMG, Magalhaes JR, Oliveira HC, Salgado I (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett 579:3814–3820PubMedCrossRefPubMedCentralGoogle Scholar
  153. Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB (2009) Thioredoxin targets in plants: the first 30 years. J Proteom 72:452–474CrossRefGoogle Scholar
  154. Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/A1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase. J Biol Chem 283:32957–32967PubMedPubMedCentralCrossRefGoogle Scholar
  155. Mur LAJ, Mandon J, Persijn S, Crisstescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KM, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052PubMedCrossRefPubMedCentralGoogle Scholar
  156. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421PubMedCrossRefPubMedCentralGoogle Scholar
  157. Nikkanen L, Toivola J, Guinea Diaz M, Rintamäki E (2017) Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos Trans R Soc Lond B Biol Sci 372:20160474PubMedPubMedCentralCrossRefGoogle Scholar
  158. Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98:8777–8796PubMedCrossRefPubMedCentralGoogle Scholar
  159. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279PubMedCrossRefPubMedCentralGoogle Scholar
  160. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484PubMedCrossRefPubMedCentralGoogle Scholar
  161. Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648PubMedPubMedCentralCrossRefGoogle Scholar
  162. Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103PubMedPubMedCentralCrossRefGoogle Scholar
  163. Ortiz-Espín A, Locato V, Camejo D, Schiermeyer A, De Gara L, Sevilla F, Jiménez A (2015) Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment. Ann Bot 116:571–582PubMedPubMedCentralCrossRefGoogle Scholar
  164. Ortiz-Espín A, Sevilla F, Jiménez A (2017a) The role of ascorbate in plant growth and development. In: Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 25–45CrossRefGoogle Scholar
  165. Ortiz-Espín A, Iglesias-Fernández R, Calderón A, Carbonero P, Sevilla F, Jiménez A (2017b) Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 and AtAZF2 and affects seed germination under saline conditions. J Exp Bot 68:1025–1038PubMedPubMedCentralCrossRefGoogle Scholar
  166. Pedrajas JR, Bárcena JA (2018) Peroxiredoxins: types, characteristics and functions in higher plants. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 95–121CrossRefGoogle Scholar
  167. Pérez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ (2006) Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell 18(9):2356–2368PubMedPubMedCentralCrossRefGoogle Scholar
  168. Pérez-Ruiz JM, González M, Spinola MC, Sandalio LM, Cejudo FJ (2009) The quaternary structure of NADPH thioredoxin reductase C is redox-sensitive. Mol Plant 2:457–467PubMedCrossRefPubMedCentralGoogle Scholar
  169. Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmuller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197PubMedPubMedCentralCrossRefGoogle Scholar
  170. Planchet E, Kaiser WM (2006) Nitric oxide production in plants: facts and fictions. Plant Signal Behav 1:46PubMedPubMedCentralCrossRefGoogle Scholar
  171. Pospíšil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta 1817:218–231PubMedCrossRefPubMedCentralGoogle Scholar
  172. Potters G, DeGara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40:537–548CrossRefGoogle Scholar
  173. Pulido P, Cazalis R, Cejudo FJ (2009) An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. Plant J 57:132–145PubMedCrossRefPubMedCentralGoogle Scholar
  174. Pulido P, Spinola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, Gonzalez M, Cejudo FJ (2010) Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. J Exp Bot 61:4043–4054PubMedPubMedCentralCrossRefGoogle Scholar
  175. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A 109:5535–5540PubMedPubMedCentralCrossRefGoogle Scholar
  176. Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19:1851–1865PubMedPubMedCentralCrossRefGoogle Scholar
  177. Rey P, Cuiné S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J 41:31–42PubMedCrossRefPubMedCentralGoogle Scholar
  178. Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS (2005) Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antiox Redox Sign 7:619–626CrossRefGoogle Scholar
  179. Rivas S, Rougon-Cardoso A, Smoker M, Schauser L, Yoshioka H, Jones JD (2004) CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence. EMBO J 23:2156–2165PubMedPubMedCentralCrossRefGoogle Scholar
  180. Rochaix JD (2012) Regulation of photosynthetic electron transport. Biochim Biophys Acta 180:375–383Google Scholar
  181. Rochaix JD (2013) Fine-tuning photosynthesis. Science 342:50–51PubMedCrossRefPubMedCentralGoogle Scholar
  182. Rochaix JD (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309PubMedCrossRefPubMedCentralGoogle Scholar
  183. Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110PubMedCrossRefPubMedCentralGoogle Scholar
  184. Romero-Puertas MC, Laxa M, Delledonne M (2007) S-Nitrosylation of peroxiredoxin IIE promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19:4120–4130PubMedPubMedCentralCrossRefGoogle Scholar
  185. Romero-Puertas MC, Campostrini N, Matte A, Righetti PG, Perazzolli M, Zolla L, Roepstorff P, Delledonne M (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469PubMedCrossRefPubMedCentralGoogle Scholar
  186. Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM (2013) Protein S-nitrosylation in plants under abiotic stress: an overview. Front Plant Sci 4:373PubMedPubMedCentralCrossRefGoogle Scholar
  187. Sanakis Y, Goussias C, Mason RP, Petrouleas V (1997) NO interacts with the tyrosine radical YD of photosystem II to form an iminoxyl radical. Biochemistry 36:1411–1417PubMedCrossRefPubMedCentralGoogle Scholar
  188. Schansker G, Goussias C, Petrouleas V, Rutherford AW (2002) Reduction of the Mn cluster of the water-oxidizing enzyme by nitric oxide: formation of an S2 state. Biochem 41:3057–3064CrossRefGoogle Scholar
  189. Sehrawat A, Deswal R (2014) Sub-proteome S-nitrosylation analysis in Brassica juncea hints at the regulation of Brassicaceae specific as well as other vital metabolic pathway(s) by nitric oxide and suggests posttranslational modifications cross-talk. Nitric Oxide 43:97–111PubMedCrossRefPubMedCentralGoogle Scholar
  190. Seligman K, Saviani EE, Oliveira HC, Pinto-Maglio CA, Salgado I (2008) Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant Cell Physiol 49:1112–1121PubMedCrossRefPubMedCentralGoogle Scholar
  191. Sengupta R, Holmgren A (2013) Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid Redox Signal 18:259–269PubMedCrossRefPubMedCentralGoogle Scholar
  192. Serrato AJ, Pérez-Ruiz JM, Spínola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821–43827PubMedCrossRefPubMedCentralGoogle Scholar
  193. Serrato AJ, Romero-Puertas MC, Lázaro-Payo A, Sahrawy M (2018) Regulation by S-nitrosylation of the Calvin-Benson cycle fructose-1, 6-bisphosphatase in Pisum sativum. Redox Biol 14:409–416PubMedCrossRefPubMedCentralGoogle Scholar
  194. Seth D, Stamler JS (2011) The SNO-proteome: causation and classifications. Curr Opin Chem Biol 15:129–136PubMedCrossRefPubMedCentralGoogle Scholar
  195. Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro JJ, Jiménez A (2015a) Thioredoxin/Peroxiredoxin/Sulfiredoxin system: current overview on its redox function in plants and regulation by ROS and RNS. J Exp Bot 66:2945–2955PubMedCrossRefPubMedCentralGoogle Scholar
  196. Sevilla F, Jiménez A, Lázaro JJ (2015b) What do the plant mitochondrial antioxidant and redox systems have to say in salinity, drought and extreme temperature abiotic stress situations? In: Gupta DK, Palma JM, Corpas FJ (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Cham, pp 23–55CrossRefGoogle Scholar
  197. Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjärvi J (2012) ROS-talk-how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:292PubMedPubMedCentralCrossRefGoogle Scholar
  198. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221CrossRefGoogle Scholar
  199. Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977PubMedPubMedCentralCrossRefGoogle Scholar
  200. Spinola MC, Perez-Ruiz JM, Pulido P, Kirchsteiger K, Guinea M, Gonzalez M, Cejudo FJ (2008) NTRC new ways of using NADPH in the chloroplast. Physiol Planta 133:516–524CrossRefGoogle Scholar
  201. Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyzes the formation of nitric oxide from nitrite. Planta 212:835–841PubMedCrossRefPubMedCentralGoogle Scholar
  202. Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226:465–474PubMedCrossRefPubMedCentralGoogle Scholar
  203. Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc Natl Acad Sci U S A 112:5539–5544PubMedPubMedCentralCrossRefGoogle Scholar
  204. Sun N, Hao JR, Li XY, Yin XH, Zong YY, Zhang GY, Gao C (2013) GluR6-FasL-Trx2 mediates denitrosylation and activation of procaspase-3 in cerebral ischemia/reperfusion in rats. Cell Death Dis 4:771CrossRefGoogle Scholar
  205. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zou J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956PubMedCrossRefPubMedCentralGoogle Scholar
  206. Takahashi S, Yamasaki H (2002) Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Lett 512:145–148PubMedCrossRefPubMedCentralGoogle Scholar
  207. Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804PubMedCrossRefPubMedCentralGoogle Scholar
  208. Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated post- translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599PubMedCrossRefPubMedCentralGoogle Scholar
  209. Telfer A (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. Plant Cell Physiol 55:1216–1223PubMedPubMedCentralCrossRefGoogle Scholar
  210. Tewari RK, Watanabe D, Watanabe M (2012) Chloroplastic NADPH oxidase-like activity-mediated perpetual hydrogen peroxide generation in the chloroplast induces apoptotic-like death of Brassica napus leaf protoplasts. Planta 235:99–110PubMedCrossRefPubMedCentralGoogle Scholar
  211. Tewari RK, Prommer J, Watanabe M (2013) Endogenous nitric oxide generation in protoplast chloroplasts. Plant Cell Rep 32:31–44PubMedCrossRefGoogle Scholar
  212. Thalineau E, Truong HN, Berger A, Fournier C, Boscari A, Wendehenne D, Jeandroz S (2016) Cross-regulation between N metabolism and nitric oxide (NO) signaling during plant immunity. Front Plant Sci 8:472Google Scholar
  213. Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trend Plant Sci 19:10–17CrossRefGoogle Scholar
  214. Tikkanen M, Gollan PJ, Mekala NR, Isojarvi J, Aro EM (2014) Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism. Phil Trans R Soc Lond B Biol Sci 369:20130229CrossRefGoogle Scholar
  215. Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett 576:151–155PubMedCrossRefPubMedCentralGoogle Scholar
  216. Triantaphylides C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trend Plant Sci 14:219–228CrossRefGoogle Scholar
  217. Tun NN, Santa-Catarina C, Begum T, Silveira V, Handrow I, Flohe I, Scherer GF (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354PubMedCrossRefPubMedCentralGoogle Scholar
  218. Turkan I (2017) Emerging roles for ROS and RNS-versatile molecules in plants. J Exp Bot 68:4413–4416PubMedPubMedCentralCrossRefGoogle Scholar
  219. Turkan I (2018) ROS and RNS: key signalling molecules in plants. J Exp Bot 69:3313–3315PubMedPubMedCentralCrossRefGoogle Scholar
  220. Twigg AI, Baniulis D, Cramer WA, Hendrich MP (2009) EPR detection of an O2 surrogate bound to heme cn of the cytochrome b6f complex. J Amer Chem Soc 131:12536–12537CrossRefGoogle Scholar
  221. Umbreen S, Lubega J, Cui B, Pan Q, Jiang J, Loake G (2018) Specificity in nitric oxide signaling. J Exp Bot 69:3439–3448PubMedCrossRefPubMedCentralGoogle Scholar
  222. Van Ree K, Gehl B, Wassim Chehab E, Tsai YC, Braam J (2011) Nitric oxide accumulation in Arabidopsis is independent of NOA1 in the presence of sucrose. Plant J 68:225–233PubMedCrossRefPubMedCentralGoogle Scholar
  223. Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP (2014) S-nitrosoproteome in poplar leaves in response to acute ozone stress. PLoS One 9:e106886PubMedPubMedCentralCrossRefGoogle Scholar
  224. Vanzo E, Merl-Pham J, Velikova V, Ghirardo A, Lindermayr C, Hauck SM, Bernhardt J, Riedel K, Durner J, Schnitzler JP (2016) Modulation of protein S-nitrosylation by isoprene emission in poplar. Plant Physiol 170:1945–1961PubMedPubMedCentralCrossRefGoogle Scholar
  225. Vladkova R, Dobrikova AG, Singh R, Misra AN, Apostolova E (2011) Photoelectron transport ability of chloroplast thylakoid membranes treated with NO donor SNP: changes in flash oxygen evolution and chlorophyll fluorescence. Nitric Oxide 24:84–90PubMedCrossRefPubMedCentralGoogle Scholar
  226. Wang Y, Feng H, Qu Y, Cheng J, Zhao Z, Zhang M, Wang X (2006) The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot 57:51–61CrossRefGoogle Scholar
  227. Wei-Feng X, Wei-Ming S, Ueda A, Takabe T (2008) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 18:486–495CrossRefGoogle Scholar
  228. Wodala B, Deák Z, Vass I, Erdei L, Altorjay A, Horváth F (2008) In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol 146:1920–1927PubMedPubMedCentralCrossRefGoogle Scholar
  229. Wolosiuk RA, Crawford NA, Yee BC, Buchanan BB (1979) Isolation of three thioredoxins from spinach leaves. J Biol Chem 254:1627–1632PubMedPubMedCentralGoogle Scholar
  230. Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856PubMedCrossRefPubMedCentralGoogle Scholar
  231. Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355:1477–1488PubMedPubMedCentralCrossRefGoogle Scholar
  232. Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trend Plant Sci 4:128–129CrossRefGoogle Scholar
  233. Ying Y, Yue W, Wang S, Li S, Wang M, Zhao Y, Wang CH, Mao C, Whelan J, Shou H (2017) Two h-type thioredoxins interact with the E2 ubiquitin conjugase PHO2 to fine-tune phosphate homeostasis in rice. Plant Physiol 173:812–824PubMedCrossRefPubMedCentralGoogle Scholar
  234. Yoshida K, Hara S, Hisabori T (2015) Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. J Biol Chem 290:14278–14288PubMedPubMedCentralCrossRefGoogle Scholar
  235. Yoshida K, Hara A, Sugiura K, Fukaya Y, Hisabori T (2018) Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Proc Natl Acad Sci U S A 115:E8296–E8304PubMedPubMedCentralCrossRefGoogle Scholar
  236. Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156PubMedCrossRefGoogle Scholar
  237. Zaffagnini M, DeMi M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P (2016) Protein S-nitrosylation in photosynthetic organisms: a comprehensive overview with future perspectives. Biochim Biophys Acta 1864:952–966PubMedCrossRefPubMedCentralGoogle Scholar
  238. Zafra A, Rejón JD, Hiscock SJ, Alché J de D (2016) Patterns of ROS accumulation in the stigmas of angiosperms and visions into their multi-functionality in plant reproduction. Front Plant Sci 7:1112PubMedPubMedCentralCrossRefGoogle Scholar
  239. Zaninotto F, La Camera S, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol 141:379–383PubMedPubMedCentralCrossRefGoogle Scholar
  240. Zhang L, Wang Y, Zhao L, Shi S, Zhang L (2006) Involvement of nitric oxide in light-mediated greening of barley seedlings. J Plant Physiol 163:818–826PubMedCrossRefPubMedCentralGoogle Scholar
  241. Zhou H, Finkemeier I, Guan W, Tossounian M, Wei B, Young D, Jingjing J, Messens J, Yang X, Zhu J, Wilson M, Shen WB, Xie Y, Foyer CH (2017) Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves. Plant Cell Environ 41:1139–1153CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana Jiménez
    • 1
    Email author
  • Mª Carmen Martí
    • 1
  • Daymi Camejo
    • 1
  • Francisca Sevilla
    • 1
  1. 1.Department of Stress Biology and Plant PathologyCEBAS-CSICMurciaSpain

Personalised recommendations