Metabolism and Interplay of Reactive Oxygen and Nitrogen Species in Plant Mitochondria

  • Abir U. IgamberdievEmail author
  • Natalia V. Bykova


In the conditions when oxygen is available and redox level is moderate, the electron transport chain (ETC) of plant mitochondria reduces oxygen to water. However, when the redox level is increased, one-electron transfer to oxygen becomes more plausible and superoxide anion is formed, which is further metabolized to hydrogen peroxide, both representing reactive oxygen species (ROS). The alternative rotenone-insensitive NADH and NADPH dehydrogenases prevent the increase in redox level of NAD and NADP, while the alternative cyanide-resistant oxidase prevents the increase of redox level of ubiquinone. When oxygen is depleted, nitrite can substitute oxygen as the terminal acceptor of electrons in the mitochondrial ETC resulting in the formation of nitric oxide (NO). The interplay between NO and superoxide results in generation of peroxynitrite and other reactive nitrogen species (RNS). The reactions of peroxynitrite metabolism include participation of thioredoxin. The complex interaction between ROS and RNS in mitochondria results in the involvement of several regulatory mechanisms which include S-nitrosylation and tyrosine nitration of proteins and formation of S-nitrosoglutathione and its further conversion by S-nitrosoglutathione reductase and other reactions that aim to maintain the stable non-equilibrium state of mitochondrial metabolism. The balancing of ROS and RNS formation and scavenging represents an important function of plant mitochondria regulating cellular metabolism and initiating signal transduction events.


Nitric oxide Reactive oxygen species Reactive nitrogen species S-Nitrosoglutathione Alternative oxidase Rotenone-insensitive dehydrogenases 


  1. Abbruzzetti S, Faggiano S, Spyrakis F, Bruno S, Mozzarelli A, Astegno A, Dominici P, Viappiani C (2011) Oxygen and nitric oxide rebinding kinetics in nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana. IUBMB Life 63:1094–1100PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alber NA, Sivanesan H, Vanlerberghe GC (2017) The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. Plant Cell Environ 40:1074–1085PubMedCrossRefPubMedCentralGoogle Scholar
  3. Basu S, Azarova NA, Font MD, King SB, Hogg N, Gladwin MT, Shiva S, Kim-Shapiro DB (2008) Nitrite reductase activity of cytochrome c. J Biol Chem 283:32590–32597PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bauer ES (1982) Theoretical biology. Akadémiai Kiadó, Budapest (Originally published 1935)Google Scholar
  5. Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538PubMedCrossRefGoogle Scholar
  6. Bendall DS, Bonner WD (1971) Cyanide-insensitive respiration in plant mitochondria. Plant Physiol 47:236–245PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brown GC (1999) Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1411:351–369PubMedCrossRefPubMedCentralGoogle Scholar
  9. Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394:627–634PubMedPubMedCentralCrossRefGoogle Scholar
  10. Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3:277–287PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chauvin C, De Oliveira F, Ronot X, Mousseau M, Leverve X, Fontain E (2001) Rotenone inhibits the mitochondrial permeability transition- induced cell death in U937 and KB cells. J Biol Chem 276:41394–41398PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cogliati S, Enriquez JA, Scorrano L (2016) Mitochondrial cristae: where beauty meets functionality. Trend Biochem Sci 41:261–273PubMedCrossRefPubMedCentralGoogle Scholar
  13. Corpas FJ, Barroso JB (2014) Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Lett 588:2049–2054PubMedCrossRefGoogle Scholar
  14. Corpas FJ, Barroso JB, Palma JM, Rodríguez-Ruiz M (2017) Plant peroxisomes: a nitro-oxidative cocktail. Redox Biol 11:535–542PubMedPubMedCentralCrossRefGoogle Scholar
  15. Correa-Aragunde N, Foresi N, Delledonne M, Lamattina L (2013) Auxin induces redox regulation of ascorbate peroxidase1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. J Exp Bot 64:3339–3349PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cvetkovska M, Vanlerberghe GC (2012) Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytol 195:32–39PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cvetkovska M, Vanlerberghe GC (2013) Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ 36:721–732PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cvetkovska M, Dahal K, Alber NA, Jin C, Cheung M, Vanlerberghe GC (2014) Knockdown of mitochondrial alternative oxidase induces the ‘stress state’ of signaling molecule pools in Nicotiana tabacum, with implications for stomatal function. New Phytol 203:449–461PubMedCrossRefPubMedCentralGoogle Scholar
  19. Day DA, Wiskich JT (1995) Regulation of alternative oxidase activity in higher plants. J Bioenerg Biomembr 27:379–385PubMedCrossRefPubMedCentralGoogle Scholar
  20. de Oliveira HC, Wulff A, Saviani EE, Salgado I (2008) Nitric oxide degradation by potato tuber mitochondria: evidence for the involvement of external NAD(P)H dehydrogenases. Biochim Biophys Acta 1777:470–476PubMedCrossRefPubMedCentralGoogle Scholar
  21. Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F, Tosti N, Pasqualini S (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol 142:595–608PubMedPubMedCentralCrossRefGoogle Scholar
  23. Edman K, Ericson I, Møller IM (1985) The regulation of exogenous NAD(P)H oxidation in spinach (Spinacia oleracea) leaf mitochondria by pH and cations. Biochem J 232:471–477PubMedPubMedCentralCrossRefGoogle Scholar
  24. Elthon TE, McIntosh L (1987) Identification of the alternative terminal oxidase of higher plant mitochondria. Proc Natl Acad Sci U S A 84:8399–8403PubMedPubMedCentralCrossRefGoogle Scholar
  25. Escobar MA, Franklin KA, Svensson AS, Salter MG, Whitelam GC, Rasmusson AG (2004) Light regulation of the Arabidopsis respiratory chain. Multiple discrete photoreceptor responses contribute to induction of type II NAD(P)H dehydrogenase genes. Plant Physiol 136:2710–2721PubMedPubMedCentralCrossRefGoogle Scholar
  26. Espey MG, Thomas DD, Miranda KM, Wink DA (2002) Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide. Proc Natl Acad Sci U S A 99:11127–11132PubMedPubMedCentralCrossRefGoogle Scholar
  27. Feelisch M, Fernandez BO, Bryan NS, Garcia-Saura MF, Bauer S, Whitlock DR, Ford PC, Janero DR, Rodriguez J, Ashrafian H (2008) Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and scavenging systems. J Biol Chem 283:33927–33934PubMedPubMedCentralCrossRefGoogle Scholar
  28. Frungillo L, de Oliveira JF, Saviani EE, Oliveira HC, Martínez MC, Salgado I (2013) Modulation of mitochondrial activity by S-nitrosoglutathione reductase in Arabidopsis thaliana transgenic cell lines. Biochim Biophys Acta 1827:239–247PubMedCrossRefPubMedCentralGoogle Scholar
  29. Geisler DA, Broselid C, Hederstedt L, Rasmusson AG (2007) Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana. J Biol Chem 282:28455–28464PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gladwin MT, Kim-Shapiro DB (2008) The functional nitrite reductase activity of the heme-globins. Blood 112:2636–2647PubMedPubMedCentralCrossRefGoogle Scholar
  31. González A, Cabrera M de L, Henríquez MJ, Contreras RA, Morales B, Moenne A (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158:1451–1462PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gupta KJ, Igamberdiev AU (2011) The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion 11:537–543PubMedCrossRefGoogle Scholar
  33. Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gupta KJ, Zabalza A, van Dongen JT (2009) Regulation of respiration when the oxygen availability changes. Physiol Plant 137:383–391PubMedCrossRefGoogle Scholar
  35. Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63:1773–1784PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gupta KJ, Lee CP, Ratcliffe RG (2017) Nitrite protects mitochondrial structure and function under hypoxia. Plant Cell Physiol 58:175–183PubMedGoogle Scholar
  37. Gupta KJ, Kumari A, Florez-Sarasa I, Fernie AR, Igamberdiev AU (2018) Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain. J Exp Bot 69:3413–3424PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hao MS, Jensen AM, Boquist AS, Liu YJ, Rasmusson AG (2015) The Ca2+-regulation of the mitochondrial external NADPH dehydrogenase in plants is controlled by cytosolic pH. PLoS One 10:e0139224.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Igamberdiev AU, Bykova NV (2018) Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radic Biol Med 122:74–85PubMedCrossRefPubMedCentralGoogle Scholar
  40. Igamberdiev AU, Eprintsev AT (2016) Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front Plant Sci 7:1042PubMedPubMedCentralCrossRefGoogle Scholar
  41. Igamberdiev AU, Gardeström P (2003) Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochim Biophys Acta 1606:117–125PubMedCrossRefPubMedCentralGoogle Scholar
  42. Igamberdiev AU, Hill RD (2009) Plant mitochondrial function during anaerobiosis. Ann Bot 103:259–268PubMedCrossRefPubMedCentralGoogle Scholar
  43. Igamberdiev AU, Hill RD (2018) Elevation of cytosolic Ca2+ in response to energy deficiency in plants: the general mechanism of adaptation to low oxygen stress. Biochem J 475:1411–1425PubMedCrossRefPubMedCentralGoogle Scholar
  44. Igamberdiev AU, Kleczkowski LA (2001) Implications of adenylate kinase-governed equilibrium of adenylates on contents of free magnesium in plant cells and compartments. Biochem J 360:225–231PubMedPubMedCentralCrossRefGoogle Scholar
  45. Igamberdiev AU, Kleczkowski LA (2009) Metabolic systems maintain stable non-equilibrium via thermodynamic buffering. BioEssays 31:1091–1099PubMedCrossRefPubMedCentralGoogle Scholar
  46. Igamberdiev AU, Seregélyes C, Manac’h N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102PubMedCrossRefPubMedCentralGoogle Scholar
  47. Igamberdiev AU, Ratcliffe RG, Gupta KJ (2014) Plant mitochondria: source and target for nitric oxide. Mitochondrion 19:329–333PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jardim-Messeder D, Caverzan A, Rauber R, de Souza Ferreira E, Margis-Pinheiro M, Galina A (2015) Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytol 208:776–789PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kozlov AV, Staniek K, Nohl H (1999) Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett 454:127–130PubMedCrossRefPubMedCentralGoogle Scholar
  50. Lambers H (1982) Cyanide-resistant respiration–a non-phosphorylating electron-transport pathway acting as an energy overflow. Physiol Plant 55:478–485CrossRefGoogle Scholar
  51. Logan DC, Millar AH, Sweetlove LJ, Hill SA, Leaver CJ (2001) Mitochondrial biogenesis during germination in maize embryos. Plant Physiol 125:662–672PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lozano-Juste J, Colom-Moreno R, León J (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 62:3501–3517PubMedPubMedCentralCrossRefGoogle Scholar
  53. Małolepsza U, Rózalska S (2005) Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato. Plant Physiol Biochem 43:623–635PubMedCrossRefPubMedCentralGoogle Scholar
  54. Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96:8271–8276PubMedPubMedCentralCrossRefGoogle Scholar
  55. Michalecka AM, Svensson AS, Johansson FI, Agius SC, Johanson U, Brennicke A, Binder S, Rasmusson AG (2003) Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol 133:642–652PubMedPubMedCentralCrossRefGoogle Scholar
  56. Millar AH, Day DA (1996) Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett 398:155–158PubMedCrossRefPubMedCentralGoogle Scholar
  57. Møller IM (1997) The oxidation of cytosolic NAD(P)H by external NAD(P)H dehydrogenases in the respiratory chain of plant mitochondria. Physiol Plant 100:85–90CrossRefGoogle Scholar
  58. Møller IM (2001) Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591PubMedCrossRefGoogle Scholar
  59. Møller IM, Rasmusson AG, Fredlund KM (1993) NAD(P)H-ubiquinone oxidoreductases in plant mitochondria. J Bioenerg Biomembr 25:377–384PubMedCrossRefPubMedCentralGoogle Scholar
  60. Morgan MJ, Lehmann M, Schwarzländer M, Baxter CJ, Sienkiewicz-Porzucek A, Williams TC, Schauer N, Fernie AR, Fricker MD, Ratcliffe RG, Sweetlove LJ, Finkemeier I (2008) Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol 147:101–114PubMedPubMedCentralCrossRefGoogle Scholar
  61. Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073PubMedCrossRefPubMedCentralGoogle Scholar
  62. Navarre DA, Wendehenne D, Durner J, Noad R, Klessig DF (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol 122:573–582PubMedPubMedCentralCrossRefGoogle Scholar
  63. Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66:161–181PubMedCrossRefPubMedCentralGoogle Scholar
  64. Planchet E, Gupta KJ, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743PubMedCrossRefPubMedCentralGoogle Scholar
  65. Poyton RO, Ball KA, Castello PR (2009) Mitochondrial generation of free radicals and hypoxic signaling. Trend Endocrinol Metabol 20:332–340CrossRefGoogle Scholar
  66. Ramírez-Aguilar SJ, Keuthe M, Rocha M, Fedyaev VV, Kramp K, Gupta KJ, Rasmusson AG, Schulze WX, van Dongen JT (2011) The composition of plant mitochondrial supercomplexes changes with oxygen availability. J Biol Chem 286:43045–43053PubMedPubMedCentralCrossRefGoogle Scholar
  67. Rasmusson AG, Geisler DA, Møller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60PubMedCrossRefPubMedCentralGoogle Scholar
  68. Rasmusson AG, Fernie AR, van Dongen JT (2009) Alternative oxidase: a defence against metabolic fluctuations? Physiol Plant 137:371–382PubMedCrossRefPubMedCentralGoogle Scholar
  69. Richter C (1997) Reactive oxygen and nitrogen species regulate mitochondrial Ca2+ homeostasis and respiration. Biosci Rep 17:53–66PubMedCrossRefPubMedCentralGoogle Scholar
  70. Roberts TH, Fredlund KM, Møller IM (1995) Direct evidence for the presence of two external NAD(P)H dehydrogenases coupled to the electron transport chain in plant mitochondria. FEBS Lett 373:307–309PubMedCrossRefPubMedCentralGoogle Scholar
  71. Romero-Puertas MC, Campostrini N, Mattè A, Righetti PG, Perazzolli M, Zolla L, Roepstorff P, Delledonne M (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469PubMedCrossRefPubMedCentralGoogle Scholar
  72. Royo B, Moran JF, Ratcliffe RG, Gupta KJ (2015) Nitric oxide induces the alternative oxidase pathway in Arabidopsis seedlings deprived of inorganic phosphate. J Exp Bot 66:6273–6280PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rümer S, Gupta KJ, Kaiser WM (2009) Plant cells oxidize hydroxylamines to NO. J Exp Bot 60:2065–2072PubMedPubMedCentralCrossRefGoogle Scholar
  74. Scheibe R (2018) Maintaining homeostasis by controlled alternatives for energy distribution in plant cells under changing conditions of supply and demand. Photosynth Res
  75. Sehrawat A, Abat JK, Deswal R (2013) RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea. Front Plant Sci 4:342Google Scholar
  76. Selinski J, Hartmann A, Kordes A, Deckers-Hebestreit G, Whelan J, Scheibe R (2017) Analysis of posttranslational activation of alternative oxidase isoforms. Plant Physiol 174:2113–2127PubMedPubMedCentralCrossRefGoogle Scholar
  77. Selinski J, Hartmann A, Deckers-Hebestreit G, Day DA, Whelan J, Scheibe R (2018a) Alternative oxidase isoforms are differentially activated by tricarboxylic acid cycle intermediates. Plant Physiol 176:1423–1432PubMedCrossRefGoogle Scholar
  78. Selinski J, Scheibe R, Day DA, Whelan J (2018b) Alternative oxidase is positive for plant performance. Trend Plant Sci 23:588–597CrossRefGoogle Scholar
  79. Selles B, Hugo M, Trujillo M, Srivastava V, Wingsle G, Jacquot JP, Radi R, Rouhier N (2012) Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation. Biochem J 442:369–380PubMedCrossRefGoogle Scholar
  80. Shah JK, Cochrane DW, De Paepe R, Igamberdiev AU (2013) Respiratory complex I deficiency results in low nitric oxide levels, induction of hemoglobin and upregulation of fermentation pathways. Plant Physiol Biochem 63:185–190PubMedCrossRefGoogle Scholar
  81. Siedow JN, Umbach AL, Moore AL (1995) The active site of the cyanide-resistant oxidase from plant mitochondria contains a binuclear iron center. FEBS Lett 362:10–14PubMedCrossRefGoogle Scholar
  82. Simonin V, Galina A (2013) Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner. Biochem J 449:263–273PubMedCrossRefPubMedCentralGoogle Scholar
  83. Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226:465–474PubMedCrossRefPubMedCentralGoogle Scholar
  84. Stucki JW (1980) The thermodynamic-buffer enzymes. Eur J Biochem 109:257–267PubMedCrossRefPubMedCentralGoogle Scholar
  85. Sun J, Trumpower BL (2003) Superoxide anion generation by the cytochrome bc1 complex. Arch Biochem Biophys 419:198–206PubMedCrossRefPubMedCentralGoogle Scholar
  86. Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett 576:151–155PubMedCrossRefPubMedCentralGoogle Scholar
  87. Umbach AL, Fiorani F, Siedow JN (2005) Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol 139:1806–1820PubMedPubMedCentralCrossRefGoogle Scholar
  88. Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847PubMedPubMedCentralCrossRefGoogle Scholar
  89. Vanlerberghe GC, Day DA, Wiskich JT, Vanlerberghe AE, McIntosh L (1995) Alternative oxidase activity in tobacco leaf mitochondria. Dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol 109:353–361PubMedPubMedCentralCrossRefGoogle Scholar
  90. Virolainen E, Blokhina O, Fagerstedt K (2002) Ca2+-induced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress. Ann Bot 90:509–516PubMedPubMedCentralCrossRefGoogle Scholar
  91. Vishwakarma A, Kumari A, Mur LAJ, Gupta KJ (2018) A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production. Free Radic Biol Med 122:40–51PubMedCrossRefPubMedCentralGoogle Scholar
  92. Wulff A, Oliveira HC, Saviani EE, Salgado I (2009) Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide 21:132–139PubMedCrossRefPubMedCentralGoogle Scholar
  93. Xu X, Arriaga EA (2009) Qualitative determination of superoxide release at both sides of the mitochondrial inner membrane by capillary electrophoretic analysis of the oxidation products of triphenylphosphonium hydroethidine. Free Radic Biol Med 46:905–913PubMedPubMedCentralCrossRefGoogle Scholar
  94. Yang H, Mu J, Chen L, Feng J, Hu J, Li L, Zhou JM, Zuo J (2015) S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol 167:1604–1615PubMedPubMedCentralCrossRefGoogle Scholar
  95. Zabalza A, van Dongen JT, Froehlich A, Oliver SN, Faix B, Gupta KJ, Schmälzlin E, Igal M, Orcaray L, Royuela M, Geigenberger P (2009) Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol 149:1087–1098PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Morden Research and Development CentreAgriculture and Agri-Food CanadaMordenCanada

Personalised recommendations